N. Itoh and S. Nagata, A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen, J. Biol. Chem, vol.268, pp.10932-10937, 1993.

L. A. Tartaglia, T. M. Ayres, G. H. Wong, and D. V. Goeddel, A novel domain within the 55 kd TNF receptor signals cell death, Cell, vol.74, pp.845-853, 1993.

B. Lowin, F. Beermann, A. Schmidt, and J. Tschopp, A null mutation in the perforin gene impairs cytolytic T lymphocyte-and natural killer cell-mediated cytotoxicity, Proc. Natl. Acad. Sci, vol.91, pp.11571-11575, 1994.

A. Shanker, A. D. Brooks, K. M. Jacobsen, J. W. Wine, R. H. Wiltrout et al., Antigen presented by tumors in vivo determines the nature of CD8+ T-cell cytotoxicity, Cancer Res, vol.69, pp.6615-6623, 2009.

I. Prager, C. Liesche, H. Van-ooijen, D. Urlaub, Q. Verron et al., NK cells switch from granzyme B to death receptor-mediated cytotoxicity during serial killing, J. Exp. Med, vol.216, pp.2113-2127, 2019.

A. Ratner and W. R. Clark, Role of TNF-alpha in CD8+ cytotoxic T lymphocyte-mediated lysis, J. Immunol, vol.150, pp.4303-4314, 1993.

D. Kagi, F. Vignaux, B. Ledermann, K. Burki, V. Depraetere et al., Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity, Science, vol.265, pp.528-530, 1994.

B. Lowin, M. Hahne, C. Mattmann, and J. Tschopp, Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways, Nature, vol.370, pp.650-652, 1994.

Y. Oshimi, S. Oda, Y. Honda, S. Nagata, and S. Miyazaki, Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells, J. Immunol, vol.157, pp.2909-2915, 1996.

K. Takeda, Y. Hayakawa, M. J. Smyth, N. Kayagaki, N. Yamaguchi et al., Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells, Nat. Med, vol.7, pp.94-100, 2001.

C. J. Kearney, S. J. Vervoort, S. J. Hogg, K. M. Ramsbottom, A. J. Freeman et al., Tumor immune evasion arises through loss of TNF sensitivity, Sci. Immunol, vol.3, 2018.

J. R. Cubillos-ruiz, S. E. Bettigole, and L. H. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer, vol.168, pp.692-706, 2017.

H. Urra, E. Dufey, T. Avril, E. Chevet, and C. Hetz, Endoplasmic Reticulum Stress and the Hallmarks of Cancer, Trends Cancer, vol.2, pp.252-262, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01308007

C. M. Limia, C. Sauzay, H. Urra, C. Hetz, E. Chevet et al., Emerging Roles of the Endoplasmic Reticulum Associated Unfolded Protein Response in Cancer Cell Migration and Invasion, Cancers, vol.11, p.631, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02160375

E. Madden, S. E. Logue, S. J. Healy, S. Manie, and A. Samali, The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance, Biol. Cell, vol.111, pp.1-17, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02379638

V. Karstedt, S. Conti, A. Nobis, M. Montinaro, A. Hartwig et al., Cancer cell-autonomous TRAIL-R signaling promotes KRAS-driven cancer progression, invasion, and metastasis, Cancer Cell, vol.27, pp.561-573, 2015.

K. Seyrek, M. Richter, and I. N. Lavrik, Decoding the sweet regulation of apoptosis: The role of glycosylation and galectins in apoptotic signaling pathways, Cell Death Differ, vol.26, pp.981-993, 2019.

K. Chakrabandhu, Z. Herincs, S. Huault, B. Dost, L. Peng et al., Palmitoylation is required for efficient Fas cell death signaling, EMBO J, vol.26, pp.209-220, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165458

C. Feig, V. Tchikov, S. Schutze, and M. E. Peter, Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling, EMBO J, vol.26, pp.221-231, 2007.

A. C. Cruz, M. Ramaswamy, C. Ouyang, C. A. Klebanoff, P. Sengupta et al., Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction, Nat. Commun, 2016.

S. Plenchette, S. Romagny, V. Laurens, and A. Bettaieb, S-Nitrosylation in TNF superfamily signaling pathway: Implication in cancer, Redox Biol, vol.6, pp.507-515, 2015.

R. Herrero, O. Kajikawa, G. Matute-bello, Y. Wang, N. Hagimoto et al., The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region, J. Clin. Investig, vol.121, pp.1174-1190, 2011.

T. Delanghe, Y. Dondelinger, and M. J. Bertrand, RIPK1 Kinase-Dependent Death: A Symphony of Phosphorylation Events, Trends Cell Biol, 2020.

E. Lafont, T. Hartwig, and H. Walczak, Paving TRAIL's Path with Ubiquitin, Trends Biochem. Sci, vol.43, pp.44-60, 2018.

L. A. O'reilly, L. Tai, L. Lee, E. A. Kruse, S. Grabow et al., Membrane-bound Fas ligand only is essential for Fas-induced apoptosis, Nature, vol.461, pp.659-663, 2009.

K. Newton, K. E. Wickliffe, D. L. Dugger, A. Maltzman, M. Roose-girma et al., Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis, Nature, vol.574, pp.428-431, 2019.

P. Tao, J. Sun, Z. Wu, S. Wang, J. Wang et al., A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1, Nature, vol.2020, pp.109-114

N. Lalaoui, S. E. Boyden, H. Oda, G. M. Wood, D. L. Stone et al., Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease, Nature, vol.577, pp.103-108, 2020.

K. J. Tracey, B. Beutler, S. F. Lowry, J. Merryweather, S. Wolpe et al.,

A. Zentella and J. D. Albert, Shock and tissue injury induced by recombinant human cachectin, Science, vol.234, pp.470-474, 1986.

O. Micheau and J. Tschopp, Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Cell, vol.114, pp.181-190, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00527105

L. Schlicher, P. Brauns-schubert, F. Schubert, and U. Maurer, SPATA2: More than a missing link, Cell Death Differ, vol.24, pp.1142-1147, 2017.

E. Lafont, P. Draber, E. Rieser, M. Reichert, S. Kupka et al., TBK1 and IKKepsilon prevent TNF-induced cell death by RIPK1 phosphorylation, Nat. Cell. Biol, vol.20, pp.1389-1399, 2018.

D. Xu, T. Jin, H. Zhu, H. Chen, D. Ofengeim et al., TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in, Aging. Cell, vol.174, pp.1477-1491, 2018.

A. Annibaldi, S. Wicky-john, T. Vanden-berghe, K. N. Swatek, J. Ruan et al., Ubiquitin-Mediated Regulation of RIPK1 Kinase Activity Independent of IKK and MK2, Mol. Cell, vol.69, pp.566-580, 2018.

Y. Dondelinger, S. Jouan-lanhouet, T. Divert, E. Theatre, J. Bertin et al., NF-?B-Independent Role of IKK?/IKK? in Preventing RIPK1

, Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling, Mol. Cell, vol.60, pp.63-76, 2015.

Y. Dondelinger, T. Delanghe, D. Priem, M. A. Wynosky-dolfi, D. Sorobetea et al., Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation, Nat. Commun, vol.10, p.1729, 2019.

Y. Dondelinger, T. Delanghe, D. Rojas-rivera, D. Priem, T. Delvaeye et al., MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death, Nat. Cell. Biol, vol.19, pp.1237-1247, 2017.

I. Jaco, A. Annibaldi, N. Lalaoui, R. Wilson, T. Tenev et al., MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death, Mol. Cell, 2017.

M. B. Menon, J. Gropengiesser, J. Fischer, L. Novikova, A. Deuretzbacher et al., p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection, Nat. Cell. Biol, vol.19, pp.1248-1259, 2017.

D. J. Van-antwerp, S. J. Martin, T. Kafri, D. R. Green, and I. M. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science, vol.274, pp.787-789, 1996.

N. Yatim, S. Cullen, and M. L. Albert, Dying cells actively regulate adaptive immune responses, Nat. Rev. Immunol, vol.17, pp.262-275, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01491773

A. J. Legrand, M. Konstantinou, E. F. Goode, and P. Meier, The Diversification of Cell Death and Immunity: Memento Mori, Mol. Cell, vol.76, pp.232-242, 2019.

N. Holler, R. Zaru, O. Micheau, M. Thome, A. Attinger et al., Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nat. Immunol, vol.1, pp.489-495, 2000.

O. Meurette, A. Rebillard, L. Huc, G. Le-moigne, D. Merino et al., TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions, Cancer Res, vol.67, pp.218-226, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690349

P. Geserick, M. Hupe, M. Moulin, W. W. Wong, M. Feoktistova et al., Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment, J. Cell Biol, vol.187, pp.1037-1054, 2009.

I. Karl, M. Jossberger-werner, N. Schmidt, S. Horn, M. Goebeler et al., TRAF2 inhibits TRAIL-and CD95L-induced apoptosis and necroptosis, Cell Death Dis, vol.5, 1444.

A. Degterev, Z. Huang, M. Boyce, Y. Li, P. Jagtap et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury, Nat. Chem. Biol, vol.1, pp.112-119, 2005.

E. J. Petrie, P. E. Czabotar, and J. M. Murphy, The Structural Basis of Necroptotic Cell Death Signaling, Trends Biochem. Sci, vol.44, pp.53-63, 2019.

G. Koo, M. J. Morgan, D. Lee, W. Kim, J. Yoon et al., Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics, Cell Res, vol.25, pp.707-725, 2015.

T. L. Aaes, A. Kaczmarek, T. Delvaeye, B. De-craene, S. De-koker et al., Vaccination with Necroptotic Cancer Cells Induces Efficient Anti-tumor Immunity, Cell Rep, vol.15, pp.274-287, 2016.

K. Zhu, W. Liang, Z. Ma, D. Xu, S. Cao et al., Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression, Cell Death Dis, vol.9, p.500, 2018.

C. J. Kearney, S. P. Cullen, G. A. Tynan, C. M. Henry, D. Clancy et al., Necroptosis suppresses inflammation via termination of TNF-or LPS-induced cytokine and chemokine production, Cell Death Differ, vol.22, pp.1313-1327, 2015.

T. Douanne, G. Andre-gregoire, K. Trillet, A. Thys, A. Papin et al., Pannexin-1 limits the production of proinflammatory cytokines during necroptosis, EMBO Rep, vol.20, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02281304

M. C. Tanzer, A. Frauenstein, C. A. Stafford, K. Phulphagar, M. Mann et al., Quantitative and Dynamic Catalogs of Proteins Released during Apoptotic and Necroptotic Cell Death, Cell Rep, vol.30, pp.1260-1270, 2020.

S. L. Orozco, B. P. Daniels, N. Yatim, M. N. Messmer, G. Quarato et al., Cell Membrane Integrity. Cell Rep, vol.28, pp.2275-2287, 2019.

Z. Cai, A. Zhang, S. Choksi, W. Li, T. Li et al., Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration, Cell Res, vol.26, pp.886-900, 2016.

C. B. Medina, P. Mehrotra, S. Arandjelovic, J. S. Perry, Y. Guo et al., Metabolites released from apoptotic cells act as tissue messengers, Nature, 2020.

N. Yatim, H. Jusforgues-saklani, S. Orozco, O. Schulz, R. Barreira-da-silva et al., RIPK1 and NF-kappaB signaling in dying cells determines cross-priming of CD8(+) T cells, Science, vol.350, pp.328-334, 2015.

L. Li, R. M. Thomas, H. Suzuki, J. K. De-brabander, X. Wang et al., A small molecule Smac mimic potentiates TRAIL-and TNFalpha-mediated cell death, Science, vol.305, pp.1471-1474, 2004.

M. J. Bertrand, S. Milutinovic, K. M. Dickson, W. C. Ho, A. Boudreault et al., A. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination, Mol. Cell, vol.30, pp.689-700, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00830439

T. K. Oost, C. Sun, R. C. Armstrong, A. S. Al-assaad, S. F. Betz et al., Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer, J. Med. Chem, vol.47, pp.4417-4426, 2004.

E. Varfolomeev, J. W. Blankenship, S. M. Wayson, A. V. Fedorova, N. Kayagaki et al., IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis, Cell, vol.131, pp.669-681, 2007.

J. E. Vince, W. W. Wong, N. Khan, R. Feltham, D. Chau et al., IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis, Cell, vol.131, pp.682-693, 2007.

J. E. Vince, D. Pantaki, R. Feltham, P. D. Mace, S. M. Cordier et al., TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis, J. Biol. Chem, vol.284, pp.35906-35915, 2009.

F. Gonzalvez, D. Lawrence, B. Yang, S. Yee, R. Pitti et al., TRAF2 Sets a threshold for extrinsic apoptosis by tagging caspase-8 with a ubiquitin shutoff timer, Mol. Cell, vol.48, pp.888-899, 2012.

N. Etemadi, M. Chopin, H. Anderton, M. C. Tanzer, J. A. Rickard et al., TNF and NF-kappaB signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1

C. J. Kearney, N. Lalaoui, A. J. Freeman, K. M. Ramsbottom, J. Silke et al., PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF, Cell Death Differ, vol.24, pp.1705-1716, 2017.

D. W. Vredevoogd, T. Kuilman, M. A. Ligtenberg, J. Boshuizen, K. E. Stecker et al., Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell, vol.178, pp.585-599, 2019.

R. J. Moore, D. M. Owens, G. Stamp, C. Arnott, F. Burke et al., Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis, Nat. Med, vol.5, pp.828-831, 1999.

M. Suganuma, S. Okabe, M. W. Marino, A. Sakai, E. Sueoka et al., Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice, Cancer Res, vol.59, pp.4516-4518, 1999.

E. Pikarsky, R. M. Porat, I. Stein, R. Abramovitch, S. Amit et al., NF-kappaB functions as a tumour promoter in inflammation-associated cancer, Nature, vol.431, pp.461-466, 2004.

F. Balkwill, Tumour necrosis factor and cancer, Nat. Rev. Cancer, vol.9, pp.361-371, 2009.

J. B. Cordero, J. P. Macagno, R. K. Stefanatos, K. E. Strathdee, R. L. Cagan et al., Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter, Dev. Cell, vol.18, pp.999-1011, 2010.

E. J. Park, J. H. Lee, G. Y. Yu, G. He, S. R. Ali et al., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression, Cell, vol.140, pp.197-208, 2010.

F. Bertrand, J. Rochotte, C. Colacios, A. Montfort, A. F. Tilkin-mariame et al., Blocking Tumor Necrosis Factor alpha Enhances CD8 T-cell-Dependent Immunity in Experimental Melanoma, Cancer Res, vol.75, pp.2619-2628, 2015.

F. Bertrand, A. Montfort, E. Marcheteau, C. Imbert, J. Gilhodes et al., TNFalpha blockade overcomes resistance to anti-PD-1 in experimental melanoma, Nat. Commun, vol.8, 2017.

A. Montfort, C. Colacios, T. Levade, N. Andrieu-abadie, N. Meyer et al., The TNF Paradox in Cancer Progression and Immunotherapy, Front. Immunol, vol.10, 1818.

E. Perez-ruiz, L. Minute, I. Otano, M. Alvarez, M. C. Ochoa et al., Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy, Nature, vol.569, pp.428-432, 2019.

J. Ogasawara, R. Watanabe-fukunaga, M. Adachi, A. Matsuzawa, T. Kasugai et al., Lethal effect of the anti-Fas antibody in mice, Nature, vol.364, pp.806-809, 1993.

F. Rieux-laucat, What's up in the ALPS, Curr. Opin. Immunol, vol.49, pp.79-86, 2017.

G. H. Fisher, F. J. Rosenberg, S. E. Straus, J. K. Dale, L. A. Middleton et al., Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome, Cell, vol.81, pp.935-946, 1995.

F. Rieux-laucat, F. Le-deist, C. Hivroz, I. A. Roberts, K. M. Debatin et al., Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity, Science, vol.268, pp.1347-1349, 1995.

J. Desbarats, R. B. Birge, M. Mimouni-rongy, D. E. Weinstein, J. S. Palerme et al., Fas engagement induces neurite growth through ERK activation and p35 upregulation, Nat. Cell. Biol, vol.5, pp.118-125, 2003.

S. Senju, I. Negishi, N. Motoyama, F. Wang, K. Nakayama et al., Functional significance of the Fas molecule in naive lymphocytes, Int. Immunol, vol.8, pp.423-431, 1996.

S. Karray, C. Kress, S. Cuvellier, C. Hue-beauvais, D. Damotte et al., Complete loss of Fas ligand gene causes massive lymphoproliferation and early death, indicating a residual activity of gld allele, J. Immunol, vol.172, pp.2118-2125, 2004.

A. Rossin, G. Miloro, and A. O. Hueber, TRAIL and FasL Functions in Cancer and Autoimmune Diseases: Towards an Increasing Complexity, Cancers, vol.11, p.639, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02189531

A. Bosque, J. I. Aguilo, M. Rey, E. Paz-artal, L. M. Allende et al., Cell cycle regulation by FasL and Apo2L/TRAIL in human T-cell blasts. Implications for autoimmune lymphoproliferative syndromes, J. Leukoc. Biol, vol.84, pp.488-498, 2008.

C. A. Klebanoff, C. D. Scott, A. J. Leonardi, T. N. Yamamoto, A. C. Cruz et al., Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy, J. Clin. Investig, vol.126, pp.318-334, 2016.

S. E. Straus, E. S. Jaffe, J. M. Puck, J. K. Dale, K. B. Elkon et al., The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis, Blood, vol.98, pp.194-200, 2001.

M. Zornig, A. Grzeschiczek, M. B. Kowalski, K. U. Hartmann, and T. Moroy, Loss of Fas/Apo-1 receptor accelerates lymphomagenesis in E mu L-MYC transgenic mice but not in animals infected with MoMuLV, Oncogene, vol.10, pp.2397-2401, 1995.

S. Afshar-sterle, D. Zotos, N. J. Bernard, A. K. Scherger, L. Rodling et al., Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas, Nat. Med, vol.20, pp.283-290, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02386302

Y. Xu, A. J. Szalai, T. Zhou, K. R. Zinn, T. R. Chaudhuri et al., Fc gamma Rs modulate cytotoxicity of anti-Fas antibodies: Implications for agonistic antibody-based therapeutics, J. Immunol, vol.171, pp.562-568, 2003.

N. Holler, A. Tardivel, M. Kovacsovics-bankowski, S. Hertig, O. Gaide et al., Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex, Mol. Cell. Biol, vol.23, pp.1428-1440, 2003.

I. Verbrugge, E. H. Wissink, R. W. Rooswinkel, J. Jongsma, N. Beltraminelli et al., Combining radiotherapy with APO010 in cancer treatment, Clin. Cancer Res, vol.15, pp.2031-2038, 2009.

G. Eisele, P. Roth, K. Hasenbach, S. Aulwurm, F. Wolpert et al., APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo, Neuro-Oncology, vol.13, pp.155-164, 2011.

L. Chen, S. M. Park, A. V. Tumanov, A. Hau, K. Sawada et al., Nature, vol.465, pp.492-496, 2010.

A. S. Qadir, A. M. Stults, A. E. Murmann, and M. E. Peter, The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer, Sci. Rep, vol.10, 1310.

A. S. Qadir, P. Ceppi, S. Brockway, C. Law, L. Mu et al., CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response, vol.18, pp.2373-2386, 2017.

M. Teodorczyk, S. Kleber, D. Wollny, J. P. Sefrin, B. Aykut et al., CD95 promotes metastatic spread via Sck in pancreatic ductal adenocarcinoma, Cell Death Differ, vol.22, pp.1192-1202, 2015.

E. Letellier, S. Kumar, I. Sancho-martinez, S. Krauth, A. Funke-kaiser et al., CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger their recruitment to the inflammatory site, Immunity, vol.32, pp.240-252, 2010.

L. Gao, G. S. Gulculer, L. Golbach, H. Block, A. Zarbock et al., Endothelial cell-derived CD95 ligand serves as a chemokine in induction of neutrophil slow rolling and adhesion, vol.5, 2016.

S. P. Cullen, C. M. Henry, C. J. Kearney, S. E. Logue, M. Feoktistova et al., Fas/CD95-induced chemokines can serve as "find-me" signals for apoptotic cells, Mol. Cell, vol.49, pp.1034-1048, 2013.

G. T. Motz, S. P. Santoro, L. P. Wang, T. Garrabrant, R. R. Lastra et al., Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors, Nat. Med, vol.20, pp.607-615, 2014.

M. A. Lakins, E. Ghorani, H. Munir, C. P. Martins, and J. D. Shields, Cancer-associated fibroblasts induce antigen-specific deletion of CD8 (+) T Cells to protect tumour cells, Nat. Commun, vol.9, p.948, 2018.

J. Zhu, C. G. Powis-de-tenbossche, S. Cane, D. Colau, N. Van-baren et al., Van den Eynde, B.J. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes, Nat. Commun, vol.8, 1404.

F. J. Hoogwater, M. W. Nijkamp, N. Smakman, E. J. Steller, B. L. Emmink et al., Oncogenic K-Ras turns death receptors into metastasis-promoting receptors in human and mouse colorectal cancer cells, Gastroenterology, vol.138, pp.2357-2367, 2010.

E. J. Steller, L. Ritsma, D. A. Raats, F. J. Hoogwater, B. L. Emmink et al., The death receptor CD95 activates the cofilin pathway to stimulate tumour cell invasion, EMBO Rep, vol.12, pp.931-937, 2011.

D. A. Raats, N. Frenkel, S. J. Van-schelven, I. H. Rinkes, J. Laoukili et al., CD95 ligand induces senescence in mismatch repair-deficient human colon cancer via chronic caspase-mediated induction of DNA damage, Cell Death Dis, vol.8, 2017.

S. Kleber, I. Sancho-martinez, B. Wiestler, A. Beisel, C. Gieffers et al., Yes and PI3K bind CD95 to signal invasion of glioblastoma, Cancer Cell, vol.13, pp.235-248, 2008.

W. Wick, H. Fricke, K. Junge, G. Kobyakov, T. Martens et al., A phase II, randomized, study of weekly APG101+reirradiation versus reirradiation in progressive glioblastoma, Clin. Cancer Res, vol.20, pp.6304-6313, 2014.

J. Blaes, C. M. Thome, P. N. Pfenning, P. Rubmann, F. Sahm et al., Inhibition of CD95/CD95L (FAS/FASLG) Signaling with APG101 Prevents Invasion and Enhances Radiation Therapy for Glioblastoma, Mol. Cancer Res, vol.16, pp.767-776, 2018.

T. Boch, T. Luft, G. Metzgeroth, M. Mossner, J. C. Jann et al., Safety and efficacy of the CD95-ligand inhibitor asunercept in transfusion-dependent patients with low and intermediate risk MDS, Leuk. Res, vol.68, pp.62-69, 2018.

L. Leon-bollotte, S. Subramaniam, O. Cauvard, S. Plenchette-colas, C. Paul et al., S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells, Gastroenterology, vol.140, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00680824

R. M. Siegel, J. K. Frederiksen, D. A. Zacharias, F. K. Chan, M. Johnson et al., Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations, Science, vol.288, pp.2354-2357, 2000.

G. Papoff, P. Hausler, A. Eramo, M. G. Pagano, G. Di-leve et al., Identification and characterization of a ligand-independent oligomerization domain in the extracellular region of the CD95 death receptor, J. Biol. Chem, vol.274, pp.38241-38250, 1999.

K. Chakrabandhu, S. Huault, J. Durivault, K. Lang, L. Ta-ngoc et al., An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers, PLoS Biol, vol.14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438523

G. Balta, G. S. Monzel, C. Kleber, S. Beaudouin, J. Balta et al., 3D Cellular Architecture Modulates Tyrosine Kinase Activity, Thereby Switching CD95-Mediated Apoptosis to Survival. Cell Rep, vol.29, pp.2295-2306, 2019.

M. Tanaka, T. Suda, K. Haze, N. Nakamura, K. Sato et al., Fas ligand in human serum, Nat. Med, vol.2, pp.317-322, 1996.

M. Tanaka, T. Itai, M. Adachi, and S. Nagata, Downregulation of Fas ligand by shedding, Nat. Med, vol.4, pp.31-36, 1998.

A. M. Hohlbaum, S. Moe, and A. Marshak-rothstein, Opposing effects of transmembrane and soluble Fas ligand expression on inflammation and tumor cell survival, J. Exp. Med, vol.191, pp.1209-1220, 2000.

H. Matsuno, K. Yudoh, Y. Watanabe, F. Nakazawa, H. Aono et al., Stromelysin-1 (MMP-3) in synovial fluid of patients with rheumatoid arthritis has potential to cleave membrane bound Fas ligand, J. Rheumatol, vol.28, pp.22-28, 2001.

T. Vargo-gogola, H. C. Crawford, B. Fingleton, and L. M. Matrisian, Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand, Arch. Biochem. Biophys, vol.408, pp.155-161, 2002.

M. Schulte, K. Reiss, M. Lettau, T. Maretzky, A. Ludwig et al., ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death, Cell Death Differ, vol.14, pp.1040-1049, 2007.

V. Kirkin, N. Cahuzac, F. Guardiola-serrano, S. Huault, K. Lückerath et al., The Fas ligand intracellular domain is released by ADAM10 and SPPL2a cleavage in T-cells, Cell Death Differ, vol.14, pp.1678-1687, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00318941

M. Kiaei, K. Kipiani, N. Y. Calingasan, E. Wille, J. Chen et al., Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis, Exp. Neurol, vol.205, pp.74-81, 2007.

H. Hashimoto, M. Tanaka, T. Suda, T. Tomita, K. Hayashida et al., Soluble Fas ligand in the joints of patients with rheumatoid arthritis and osteoarthritis, Arthritis Rheum, vol.41, pp.657-662, 1998.

J. B. Oliveira, J. J. Bleesing, U. Dianzani, T. A. Fleisher, E. S. Jaffe et al., Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): Report from the 2009 NIH International Workshop, Blood, vol.116, pp.35-40, 2010.

A. Poissonnier, D. Sanséau, M. Le-gallo, M. Malleter, N. Levoin et al., CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice, Immunity, vol.45, pp.209-223, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359568

P. Schneider, N. Holler, J. L. Bodmer, M. Hahne, K. Frei et al., Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity, J. Exp. Med, vol.187, pp.1205-1213, 1998.

T. Suda, H. Hashimoto, M. Tanaka, T. Ochi, and S. Nagata, Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing, J. Exp. Med, vol.186, pp.2045-2050, 1997.

K. Bajou, H. Peng, W. E. Laug, C. Maillard, A. Noel et al., Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis, Cancer Cell, vol.14, pp.324-334, 2008.

S. Neumann, J. Hasenauer, N. Pollak, and P. Scheurich, Dominant negative effects of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 4 on TRAIL receptor 1 signaling by formation of heteromeric complexes, J. Biol. Chem, vol.289, pp.16576-16587, 2014.

D. Merino, N. Lalaoui, A. Morizot, P. Schneider, E. Solary et al., Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2, Mol. Cell. Biol, vol.26, pp.7046-7055, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00103839

F. Muhlenbeck, P. Schneider, J. L. Bodmer, R. Schwenzer, A. Hauser et al., The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation, J. Biol. Chem, vol.275, pp.32208-32213, 2000.

F. Dufour, T. Rattier, A. A. Constantinescu, L. Zischler, A. Morle et al., TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress, Oncotarget, vol.8, pp.9974-9985, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01423110

L. M. Sedger, A. Katewa, A. K. Pettersen, S. R. Osvath, G. C. Farrell et al., Extreme lymphoproliferative disease and fatal autoimmune thrombocytopenia in FasL and TRAIL double-deficient mice, Blood, vol.115, pp.3258-3268, 2010.

N. Zerafa, J. A. Westwood, E. Cretney, S. Mitchell, P. Waring et al., Cutting edge: TRAIL deficiency accelerates hematological malignancies, J. Immunol, vol.175, pp.5586-5590, 2005.

N. Finnberg, A. J. Klein-szanto, and W. S. El-deiry, TRAIL-R deficiency in mice promotes susceptibility to chronic inflammation and tumorigenesis, J. Clin. Investig, vol.118, pp.111-123, 2008.

M. J. Smyth, E. Cretney, K. Takeda, R. H. Wiltrout, L. M. Sedger et al., Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis, J. Exp. Med, vol.193, pp.661-670, 2001.

K. Takeda, M. J. Smyth, E. Cretney, Y. Hayakawa, N. Yamaguchi et al., Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth, Cell. Immunol, vol.214, pp.194-200, 2001.

H. Walczak, R. E. Miller, K. Ariail, B. Gliniak, T. S. Griffith et al., Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo, Nat. Med, vol.5, pp.157-163, 1999.

A. Ashkenazi, R. C. Pai, S. Fong, S. Leung, D. A. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand, J. Clin. Investig, vol.104, pp.155-162, 1999.

V. Karstedt, S. Montinaro, A. Walczak, and H. , Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy, Nat. Rev. Cancer, 2017.

H. Wajant, Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers, vol.11, 2019.

J. Naval, D. De-miguel, A. Gallego-lleyda, A. Anel, and L. Martinez-lostao, Importance of TRAIL Molecular Anatomy in Receptor Oligomerization and Signaling. Implications for Cancer Therapy, Cancers, vol.11, 2019.

A. L. Kretz, A. Trauzold, A. Hillenbrand, U. Knippschild, D. Henne-bruns et al., TRAILblazing Strategies for Cancer Treatment, Cancers, vol.11, 2019.

M. Leverkus, M. R. Sprick, T. Wachter, A. Denk, E. B. Brocker et al., TRAIL-induced apoptosis and gene induction in HaCaT keratinocytes: Differential contribution of TRAIL receptors 1 and 2, J. Investig. Derm, vol.121, pp.149-155, 2003.

M. Macfarlane, S. L. Kohlhaas, M. J. Sutcliffe, M. J. Dyer, and G. M. Cohen, TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies, Cancer Res, vol.65, pp.11265-11270, 2005.

J. Lemke, A. Noack, D. Adam, V. Tchikov, U. Bertsch et al., TRAIL signaling is mediated by DR4 in pancreatic tumor cells despite the expression of functional DR5, J. Mol. Med, vol.88, pp.729-740, 2010.

D. Stadel, A. Mohr, C. Ref, M. Macfarlane, S. Zhou et al., TRAIL-induced apoptosis is preferentially mediated via TRAIL receptor 1 in pancreatic carcinoma cells and profoundly enhanced by XIAP inhibitors, Clin. Cancer Res, vol.16, pp.5734-5749, 2010.

J. D. Graves, J. J. Kordich, T. H. Huang, J. Piasecki, T. L. Bush et al., Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity, Cancer Cell, vol.26, pp.177-189, 2014.

M. H. Tuthill, A. Montinaro, J. Zinngrebe, K. Prieske, P. Draber et al., TRAIL-R2-specific antibodies and recombinant TRAIL can synergise to kill cancer cells, Oncogene, vol.34, pp.2138-2144, 2015.

G. A. Dominguez, T. Condamine, S. Mony, A. Hashimoto, F. Wang et al., Selective Targeting of Myeloid-Derived Suppressor Cells in Cancer Patients Using DS-8273a, an Agonistic TRAIL-R2 Antibody, Clin. Cancer Res, vol.23, pp.2942-2950, 2017.

N. S. Wilson, A. Yang, B. Yang, S. Couto, H. Stern et al., Proapoptotic activation of death receptor 5 on tumor endothelial cells disrupts the vasculature and reduces tumor growth, Cancer Cell, vol.22, pp.80-90, 2012.

H. Ehrhardt, S. Fulda, I. Schmid, J. Hiscott, K. Debatin et al., TRAIL induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-kappaB, Oncogene, vol.22, pp.3842-3852, 2003.

S. P. Somasekharan, M. Koc, A. Morizot, O. Micheau, P. H. Sorensen et al., TRAIL promotes membrane blebbing, detachment and migration of cells displaying a dysfunctional intrinsic pathway of apoptosis, Apoptosis Int. J. Program. Cell Death, vol.18, pp.324-336, 2013.

W. Tang, W. Wang, Y. Zhang, S. Liu, Y. Liu et al., TRAIL receptor mediates inflammatory cytokine release in an NF-kappaB-dependent manner, Cell Res, vol.19, pp.758-767, 2009.

T. Hartwig, A. Montinaro, S. Von-karstedt, A. Sevko, S. Surinova et al., The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2, Mol. Cell, vol.65, pp.730-742, 2017.

C. Geismann, W. Erhart, F. Grohmann, S. Schreiber, G. Schneider et al., TRAIL/NF-kappaB/CX3CL1 Mediated Onco-Immuno Crosstalk Leading to TRAIL Resistance of Pancreatic Cancer Cell Lines, Int. J. Mol. Sci, vol.19, p.1661, 2018.

E. Lafont, C. Kantari-mimoun, P. Draber, D. De-miguel, T. Hartwig et al., The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death, EMBO J, 2017.

C. M. Henry and S. J. Martin, Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation, Mol. Cell, vol.65, pp.715-729, 2017.

E. Varfolomeev, H. Maecker, D. Sharp, D. Lawrence, M. Renz et al., Molecular determinants of kinase pathway activation by Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand, J. Biol. Chem, vol.280, pp.40599-40608, 2005.

Y. Lin, A. Devin, A. Cook, M. M. Keane, M. Kelliher et al., The death domain kinase RIP is essential for TRAIL (Apo2L)-induced activation of IkappaB kinase and c-Jun N-terminal kinase, Mol. Cell. Biol, vol.20, pp.6638-6645, 2000.

S. Fullsack, A. Rosenthal, H. Wajant, and D. Siegmund, Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling, Cell Death Dis, vol.10, 2019.

K. Azijli, S. Yuvaraj, M. P. Peppelenbosch, T. Wurdinger, H. Dekker et al., Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3-dependent invasion in resistant non-small cell lung cancer cells, J. Cell Sci, vol.125, pp.4651-4661, 2012.

V. Haselmann, A. Kurz, U. Bertsch, S. Hubner, M. Olempska-muller et al., Nuclear death receptor TRAIL-R2 inhibits maturation of let-7 and promotes proliferation of pancreatic and other tumor cells, Gastroenterology, vol.146, pp.278-290, 2014.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, EMBO J, vol.14, pp.5579-5588, 1995.

M. R. Sprick, M. A. Weigand, E. Rieser, C. T. Rauch, P. Juo et al., FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2, Immunity, vol.12, pp.599-609, 2000.

K. Schleich, U. Warnken, N. Fricker, S. Ozturk, P. Richter et al., Stoichiometry of the CD95 death-inducing signaling complex: Experimental and modeling evidence for a death effector domain chain model, Mol. Cell, vol.47, pp.306-319, 2012.

L. S. Dickens, R. S. Boyd, R. Jukes-jones, M. A. Hughes, G. L. Robinson et al., A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death, Mol. Cell, vol.47, pp.291-305, 2012.

T. M. Fu, Y. Li, A. Lu, Z. Li, P. R. Vajjhala et al., Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex, Mol. Cell, vol.64, pp.236-250, 2016.

P. J. Jost, S. Grabow, D. Gray, M. D. Mckenzie, U. Nachbur et al., XIAP discriminates between type I and type II FAS-induced apoptosis, Nature, vol.460, pp.1035-1039, 2009.

M. A. Hughes, I. R. Powley, R. Jukes-jones, S. Horn, M. Feoktistova et al., Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate, Mol. Cell, vol.61, pp.834-849, 2016.

L. M. Humphreys, J. P. Fox, C. A. Higgins, J. Majkut, T. Sessler et al., A revised model of TRAIL-R2 DISC assembly explains how FLIP(L) can inhibit or promote apoptosis

L. K. Hillert, N. V. Ivanisenko, J. Espe, C. Konig, V. A. Ivanisenko et al., Long and short isoforms of c-FLIP act as control checkpoints of DED filament assembly, Oncogene, vol.39, pp.1756-1772, 2020.

Z. Jin, Y. Li, R. Pitti, D. Lawrence, V. C. Pham et al., Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling, Cell, vol.137, pp.721-735, 2009.

S. Li, L. Zhang, Q. Yao, L. Li, N. Dong et al., Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains, Nature, vol.501, pp.242-246, 2013.

J. S. Pearson, C. Giogha, S. Y. Ong, C. L. Kennedy, M. Kelly et al., A type III effector antagonizes death receptor signalling during bacterial gut infection, Nature, vol.501, pp.247-251, 2013.

N. E. Scott, C. Giogha, G. L. Pollock, C. L. Kennedy, A. I. Webb et al., The bacterial arginine glycosyltransferase effector NleB preferentially modifies Fas-associated death domain protein (FADD), J. Biol. Chem, vol.292, pp.17337-17350, 2017.

M. Ehrenschwender, D. Siegmund, A. Wicovsky, M. Kracht, O. Dittrich-breiholz et al., Mutant PIK3CA licenses TRAIL and CD95L to induce non-apoptotic caspase-8-mediated ROCK activation, Cell Death Differ, vol.17, pp.1435-1447, 2010.

X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M. B. Greenblatt et al., Nature, vol.508, pp.103-107, 2014.

A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and D. Ron, Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat. Cell. Biol, vol.2, pp.326-332, 2000.

J. Shen, X. Chen, L. Hendershot, and R. Prywes, ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals, Dev. Cell, vol.3, pp.99-111, 2002.

B. M. Gardner and P. Walter, Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response, Science, vol.333, pp.1891-1894, 2011.

G. E. Karagoz, D. Acosta-alvear, H. T. Nguyen, C. P. Lee, F. Chu et al., An unfolded protein-induced conformational switch activates mammalian IRE1, vol.6, 2017.

P. Wang, J. Li, J. Tao, and B. Sha, The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization, J. Biol. Chem, vol.293, pp.4110-4121, 2018.

M. Calfon, H. Zeng, F. Urano, J. H. Till, S. R. Hubbard et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, vol.415, pp.92-96, 2002.

K. Yamamoto, T. Sato, T. Matsui, M. Sato, T. Okada et al., Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1, Dev. Cell, vol.13, pp.365-376, 2007.

J. Hollien and J. S. Weissman, Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response, Science, vol.313, pp.104-107, 2006.

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends Biochem. Sci, vol.39, pp.245-254, 2014.

A. G. Lerner, J. P. Upton, P. V. Praveen, R. Ghosh, Y. Nakagawa et al., IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress, Cell Metab, vol.16, pp.250-264, 2012.

S. E. Logue, E. P. Mcgrath, P. Cleary, S. Greene, K. Mnich et al., Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy, Nat. Commun, vol.9, p.3267, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01879955

D. Han, A. G. Lerner, L. Vande-walle, J. P. Upton, W. Xu et al., IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates, Cell, vol.138, pp.562-575, 2009.

A. V. Korennykh, P. F. Egea, A. A. Korostelev, J. Finer-moore, C. Zhang et al., The unfolded protein response signals through high-order assembly of Ire1, Nature, vol.457, pp.687-693, 2009.

M. Bouchecareilh, A. Higa, S. Fribourg, M. Moenner, and E. Chevet, Peptides derived from the bifunctional kinase/RNase enzyme IRE1alpha modulate IRE1alpha activity and protect cells from endoplasmic reticulum stress, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.25, pp.3115-3129, 2011.

R. Ghosh, L. Wang, E. S. Wang, B. G. Perera, A. Igbaria et al., Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress, Cell, vol.158, pp.534-548, 2014.

A. B. Tam, A. C. Koong, and M. Niwa, Ire1 has distinct catalytic mechanisms for XBP1/HAC1 splicing and RIDD, Cell Rep, vol.9, pp.850-858, 2014.

J. Liu, Y. Wang, L. Song, L. Zeng, W. Yi et al., A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1alpha stability, Nat. Commun, vol.8, 2017.

C. Hetz and F. R. Papa, The Unfolded Protein Response and Cell Fate Control, Mol. Cell, vol.69, pp.169-181, 2018.

A. Papaioannou, A. Metais, M. Maurel, L. Negroni, M. González-quiroz et al., Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs, vol.2020

F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung et al., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1, Science, vol.287, pp.664-666, 2000.

P. Hu, Z. Han, A. D. Couvillon, R. J. Kaufman, and J. H. Exton, Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression, Mol. Cell. Biol, vol.26, pp.3071-3084, 2006.

K. Yamamoto, H. Ichijo, and S. J. Korsmeyer, BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M, Mol. Cell. Biol, vol.19, pp.8469-8478, 1999.

J. Obacz, T. Avril, C. Rubio-patino, J. P. Bossowski, A. Igbaria et al., Regulation of tumor-stroma interactions by the unfolded protein response, FEBS J, vol.286, pp.279-296, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01808307

C. Rubio-patino, J. P. Bossowski, E. Chevet, and J. E. Ricci, Reshaping the Immune Tumor Microenvironment Through IRE1 Signaling, Trends Mol. Med, vol.24, pp.607-614, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01835398

C. Rubio-patino, J. P. Bossowski, G. M. De-donatis, L. Mondragon, E. Villa et al., Low-Protein Diet Induces IRE1alpha-Dependent Anticancer Immunosurveillance, Cell Metab, vol.27, pp.828-842, 2018.

J. Obacz, J. Archambeau, D. Sicari, P. J. Le-reste, R. Pineau et al., Novel IRE1-dependent proinflammatory signaling controls tumor infiltration by myeloid cells, vol.2020

H. Urra, D. R. Henriquez, J. Canovas, D. Villarroel-campos, A. Carreras-sureda et al., IRE1alpha governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A, Nat. Cell. Biol, vol.20, pp.942-953, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01879956

A. Carreras-sureda, F. Jana, H. Urra, S. Durand, D. E. Mortenson et al., Non-canonical function of IRE1alpha determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics, Nat. Cell. Biol, vol.21, pp.755-767, 2019.

F. Walter, J. Schmid, H. Dussmann, C. G. Concannon, and J. H. Prehn, Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival, Cell Death Differ, vol.22, pp.1502-1516, 2015.

C. Y. Liu, M. Schroder, and R. J. Kaufman, Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum, J. Biol. Chem, vol.275, pp.24881-24885, 2000.

C. Sarcinelli, H. Dragic, M. Piecyk, V. Barbet, C. Duret et al., ATF4-Dependent NRF2 Transcriptional Regulation Promotes Antioxidant Protection during Endoplasmic Reticulum Stress, Cancers, vol.12, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02534425

S. B. Cullinan, D. Zhang, M. Hannink, E. Arvisais, R. J. Kaufman et al., Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival, Mol. Cell. Biol, vol.23, pp.7198-7209, 2003.

S. B. Cullinan and J. A. Diehl, PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress, J. Biol. Chem, vol.279, 2004.

A. B. Tam, E. L. Mercado, A. Hoffmann, and M. Niwa, ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK, PLoS ONE, vol.7, 2012.

H. Puthalakath, L. A. O'reilly, P. Gunn, L. Lee, P. N. Kelly et al., ER stress triggers apoptosis by activating BH3-only protein Bim, Cell, vol.129, pp.1337-1349, 2007.

K. D. Mccullough, J. L. Martindale, L. O. Klotz, T. Y. Aw, and N. J. Holbrook, Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state, Mol. Cell. Biol, vol.21, pp.1249-1259, 2001.

X. Guo, G. Aviles, Y. Liu, R. Tian, B. A. Unger et al., Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway, Nature, 2020.

E. Fessler, E. M. Eckl, S. Schmitt, I. A. Mancilla, M. F. Meyer-bender et al., A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol, Nature, 2020.

S. Taniuchi, M. Miyake, K. Tsugawa, M. Oyadomari, and S. Oyadomari, Integrated stress response of vertebrates is regulated by four eIF2alpha kinases, Sci. Rep, vol.6, 2016.

J. H. Connor, D. C. Weiser, S. Li, J. M. Hallenbeck, and S. Shenolikar, Growth arrest and DNA damage-inducible protein GADD34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1, Mol. Cell. Biol, vol.21, pp.6841-6850, 2001.

I. Novoa, H. Zeng, H. P. Harding, and D. Ron, Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha, J. Cell Biol, vol.153, pp.1011-1022, 2001.

S. J. Marciniak, C. Y. Yun, S. Oyadomari, I. Novoa, Y. Zhang et al., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum, Genes Dev, vol.18, pp.3066-3077, 2004.

Y. X. Feng, E. S. Sokol, C. A. Vecchio, S. Sanduja, J. H. Claessen et al., Epithelial-to-mesenchymal transition activates PERK-eIF2alpha and sensitizes cells to endoplasmic reticulum stress, Cancer Discov, vol.4, pp.702-715, 2014.

A. Pommier, N. Anaparthy, N. Memos, Z. L. Kelley, A. Gouronnec et al., Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases, Science, vol.360, 2018.

K. Haze, H. Yoshida, H. Yanagi, T. Yura, and K. Mori, Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress, Mol. Biol. Cell, vol.10, pp.3787-3799, 1999.

J. Ye, R. B. Rawson, R. Komuro, X. Chen, U. P. Dave et al., ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs, Mol. Cell, vol.6, pp.1355-1364, 2000.

H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell, vol.107, pp.881-891, 2001.

K. Lee, W. Tirasophon, X. Shen, M. Michalak, R. Prywes et al., IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response, Genes Dev, vol.16, pp.452-466, 2002.

R. Iurlaro and C. Munoz-pinedo, Cell death induced by endoplasmic reticulum stress, FEBS J, vol.283, pp.2640-2652, 2016.

T. Li, L. Su, Y. Lei, X. Liu, Y. Zhang et al., DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells, J. Biol. Chem, vol.290, pp.11108-11118, 2015.

K. Sasaki and H. Yoshida, Golgi stress response and organelle zones, FEBS Lett, vol.593, pp.2330-2340, 2019.

Q. He, D. I. Lee, R. Rong, M. Yu, X. Luo et al., Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway, Oncogene, vol.21, pp.2623-2633, 2002.

H. Yamaguchi and H. G. Wang, CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells, J. Biol. Chem, vol.279, pp.45495-45502, 2004.

S. C. Cazanave, J. L. Mott, S. F. Bronk, N. W. Werneburg, C. D. Fingas et al., Death receptor 5 signaling promotes hepatocyte lipoapoptosis, J. Biol. Chem, vol.286, pp.39336-39348, 2011.

M. Lam, D. A. Lawrence, A. Ashkenazi, and P. Walter, Confirming a critical role for death receptor 5 and caspase-8 in apoptosis induction by endoplasmic reticulum stress, Cell Death Differ, vol.25, pp.1530-1531, 2018.

B. J. Van-raam, T. Lacina, R. K. Lindemann, and J. H. Reiling, Secretory stressors induce intracellular death receptor accumulation to control apoptosis

C. C. Jiang, L. H. Chen, S. Gillespie, K. A. Kiejda, N. Mhaidat et al., Tunicamycin sensitizes human melanoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by up-regulation of TRAIL-R2 via the unfolded protein response, Cancer Res, vol.67, pp.5880-5888, 2007.

R. Iurlaro, F. Puschel, C. L. Leon-annicchiarico, H. O'connor, S. J. Martin et al., Glucose Deprivation Induces ATF4-Mediated Apoptosis through TRAIL Death Receptors, Mol. Cell. Biol, vol.37, 2017.

H. Yamaguchi, K. Bhalla, and H. G. Wang, Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria, Cancer Res, vol.63, pp.1483-1489, 2003.

A. Cano-gonzalez, M. Mauro-lizcano, D. Iglesias-serret, J. Gil, and A. Lopez-rivas, Involvement of both caspase-8 and Noxa-activated pathways in endoplasmic reticulum stress-induced apoptosis in triple-negative breast tumor cells, Cell Death Dis, vol.9, p.134, 2018.

L. Pan, T. M. Fu, W. Zhao, L. Zhao, W. Chen et al., Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling, Cell, vol.176, pp.1477-1489, 2019.

M. Wang, M. E. Law, B. J. Davis, E. Yaaghubi, A. F. Ghilardi et al., Disulfide bond-disrupting agents activate the tumor necrosis family-related apoptosis-inducing ligand/death receptor 5 pathway, Cell Death Discov, vol.5, 2019.

M. Lam, S. A. Marsters, A. Ashkenazi, and P. Walter, Misfolded proteins bind and activate death receptor 5 to induce apoptosis during unresolved endoplasmic reticulum stress, Elife, vol.2020

L. Clancy, K. Mruk, K. Archer, M. Woelfel, J. Mongkolsapaya et al., Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis, Proc. Natl. Acad. Sci, vol.102, pp.18099-18104, 2005.

C. R. Smulski, M. Decossas, N. Chekkat, J. Beyrath, L. Willen et al., Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling, Cell Death Dis, 2017.

M. Lu, D. A. Lawrence, S. Marsters, D. Acosta-alvear, P. Kimmig et al., Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis, Science, vol.345, pp.98-101, 2014.

J. H. Lin, H. Li, D. Yasumura, H. R. Cohen, C. Zhang et al., IRE1 signaling affects cell fate during the unfolded protein response, Science, vol.318, pp.944-949, 2007.

T. K. Chang, D. A. Lawrence, M. Lu, J. Tan, J. M. Harnoss et al., Coordination between Two Branches of the Unfolded Protein Response Determines Apoptotic Cell Fate, Mol. Cell, vol.71, pp.629-636, 2018.

G. P. Sullivan, H. O'connor, C. M. Henry, P. Davidovich, D. M. Clancy et al., TRAIL Receptors Serve as Stress-Associated Molecular Patterns to Promote ER-Stress-Induced Inflammation, Dev. Cell, vol.52, 2020.

F. Püschel, F. Favaro, J. Redondo-pedraza, E. Lucendo, R. Iurlaro et al., Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells, Proc. Natl. Acad. Sci. USA 2020

Y. Teng, M. Gao, J. Wang, Q. Kong, H. Hua et al., Inhibition of eIF2alpha dephosphorylation enhances TRAIL-induced apoptosis in hepatoma cells, Cell Death Dis, vol.5, 1060.

L. H. Chen, C. C. Jiang, K. A. Kiejda, Y. F. Wang, R. F. Thorne et al., Thapsigargin sensitizes human melanoma cells to TRAIL-induced apoptosis by up-regulation of TRAIL-R2 through the unfolded protein response, Carcinogenesis, vol.28, pp.2328-2336, 2007.

T. Shiraishi, T. Yoshida, S. Nakata, M. Horinaka, M. Wakada et al., Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells, Cancer Res, vol.65, pp.6364-6370, 2005.

Y. Estornes, Y. Dondelinger, K. Weber, I. Bruggeman, A. Peall et al., N-glycosylation of mouse TRAIL-R restrains TRAIL-induced apoptosis, Cell Death Dis, vol.9, 2018.

F. Dufour, T. Rattier, S. Shirley, G. Picarda, A. A. Constantinescu et al., N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death, Cell Death Differ, vol.24, pp.500-510, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01467849

R. Martin-perez, M. Niwa, and A. Lopez-rivas, ER stress sensitizes cells to TRAIL through down-regulation of FLIP and Mcl-1 and PERK-dependent up-regulation of TRAIL-R2, Apoptosis Int. J. Program. Cell Death, vol.17, pp.349-363, 2012.

T. Koltai, Nelfinavir and other protease inhibitors in cancer: Mechanisms involved in anticancer activity, 1000.

A. De-gassart, B. Bujisic, L. Zaffalon, L. A. Decosterd, A. Di-micco et al., An inhibitor of HIV-1 protease modulates constitutive eIF2alpha dephosphorylation to trigger a specific integrated stress response, Proc. Natl. Acad. Sci, vol.113, pp.117-126, 2016.

X. Tian, J. Ye, M. Alonso-basanta, S. M. Hahn, C. Koumenis et al., Modulation of CCAAT/enhancer binding protein homologous protein (CHOP)-dependent DR5 expression by nelfinavir sensitizes glioblastoma multiforme cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), J. Biol. Chem, vol.286, pp.29408-29416, 2011.

M. Song, T. A. Sandoval, C. S. Chae, S. Chopra, C. Tan et al., IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity, Nature, vol.562, pp.423-428, 2018.

H. Dong, N. M. Adams, Y. Xu, J. Cao, D. S. Allan et al., The IRE1 endoplasmic reticulum stress sensor activates natural killer cell immunity in part by regulating c-Myc, Nat. Immunol, vol.20, pp.865-878, 2019.

T. Condamine, V. Kumar, I. R. Ramachandran, J. I. Youn, E. Celis et al., ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis, J. Clin. Investig, vol.124, pp.2626-2639, 2014.

J. M. Timmins, L. Ozcan, T. A. Seimon, G. Li, C. Malagelada et al., Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways, J. Clin. Investig, vol.119, pp.2925-2941, 2009.

F. Martinon, X. Chen, A. H. Lee, and L. H. Glimcher, TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages, Nat. Immunol, vol.11, pp.411-418, 2010.

Q. Yang, Y. S. Kim, Y. Lin, J. Lewis, L. Neckers et al., Tumour necrosis factor receptor 1 mediates endoplasmic reticulum stress-induced activation of the MAP kinase JNK, EMBO Rep, vol.7, pp.622-627, 2006.

Y. Estornes, M. A. Aguileta, C. Dubuisson, J. De-keyser, V. Goossens et al., RIPK1 promotes death receptor-independent caspase-8-mediated apoptosis under unresolved ER stress conditions, Cell Death Dis, vol.5, 1555.

S. Saveljeva, S. L. Mc-laughlin, P. Vandenabeele, A. Samali, and M. J. Bertrand, Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells, Cell Death Dis, vol.6, 1587.

J. Liu, D. Ibi, K. Taniguchi, J. Lee, H. Herrema et al., Inflammation Improves Glucose Homeostasis through IKKbeta-XBP1s Interaction, Cell, vol.167, pp.1052-1066, 2016.

N. Yousaf, D. J. Gould, E. Aganna, L. Hammond, R. M. Mirakian et al., Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-kappaB activation, Arthritis Rheum, vol.52, pp.2906-2916, 2005.

A. A. Lobito, F. C. Kimberley, J. R. Muppidi, H. Komarow, A. J. Jackson et al., Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS), Blood, vol.108, pp.1320-1327, 2006.

E. Greco, A. Aita, P. Galozzi, A. Gava, P. Sfriso et al., The novel S59P mutation in the TNFRSF1A gene identified in an adult onset TNF receptor associated periodic syndrome (TRAPS) constitutively activates NF-?B pathway, Arthritis Res. Ther, vol.17, p.93, 2015.

S. Nozaki, G. W. Sledge, . Jr, and H. Nakshatri, Repression of GADD153/CHOP by NF-kappaB: A possible cellular defense against endoplasmic reticulum stress-induced cell death, Oncogene, vol.20, pp.2178-2185, 2001.

D. Warnakulasuriyarachchi, S. Cerquozzi, H. H. Cheung, and M. Holcik, Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element, J. Biol. Chem, vol.279, pp.17148-17157, 2004.

R. B. Hamanaka, E. Bobrovnikova-marjon, X. Ji, S. A. Liebhaber, and J. A. Diehl, PERK-dependent regulation of IAP translation during ER stress, Oncogene, vol.28, pp.910-920, 2009.

P. Hu, Z. Han, A. D. Couvillon, and J. H. Exton, Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death, J. Biol. Chem, vol.279, pp.49420-49429, 2004.

B. A. Abhari, N. Mccarthy, M. Le-berre, M. Kilcoyne, L. Joshi et al., Smac mimetic suppresses tunicamycin-induced apoptosis via resolution of ER stress, Cell Death Dis, vol.10, 2019.

C. Hetz, P. Bernasconi, J. Fisher, A. H. Lee, M. C. Bassik et al., Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha, Science, vol.312, pp.572-576, 2006.

A. Shemorry, J. M. Harnoss, O. Guttman, S. A. Marsters, L. G. Komuves et al., Caspase-mediated cleavage of IRE1 controls apoptotic cell commitment during endoplasmic reticulum stress, vol.8, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the author. Licensee MDPI