D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard et al., Rapid 366 turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, vol.373, issue.6510, pp.123-129, 1995.

X. Wei, S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini et al., Viral dynamics 369 in human immunodeficiency virus type 1 infection, Nature, vol.373, issue.6510, pp.117-370, 1995.

A. S. Perelson and R. M. Ribeiro, Introduction to modeling viral infections and immunity

, Immunological Reviews, vol.285, issue.1, pp.5-8, 2018.

, Modelling viral and immune system dynamics, Nat Rev Immunol, vol.2, issue.1, pp.28-36, 2002374-01.

K. Best and A. S. Perelson, Mathematical modeling of within-host Zika virus dynamics

, Immunological Reviews, vol.285, issue.1, pp.81-96, 2018.

S. M. Ciupe, Modeling the dynamics of hepatitis B infection, immunity, and drug therapy

, Immunological Reviews, vol.285, issue.1, pp.38-54, 2018.

M. Lavielle and F. Mentré, Estimation of population pharmacokinetic parameters of 380 saquinavir in HIV patients with the MONOLIX software, J Pharmacokinet, vol.381, issue.2, pp.229-278, 2007.

J. Guedj, R. Thiébaut, and D. Commenges, Practical identifiability of HIV dynamics models, Bulletin of Mathematical Biology, vol.383, issue.8, pp.2493-513, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00204273

E. Snoeck, P. Chanu, M. Lavielle, P. Jacqmin, E. N. Jonsson et al., A 385 comprehensive Hepatitis C viral kinetic model explaining cure, Clinical Pharmacology, vol.386, issue.6, pp.706-719, 2010.

T. Nguyen and J. Guedj, HCV kinetic models and their implications in drug development: 388 HCV kinetic models and their implications, vol.4, pp.231-273, 2015.

A. Handel, I. M. Longini, and R. Antia, Towards a quantitative understanding of the within-host 391 dynamics of influenza A infections, Journal of The Royal Society Interface, vol.7, issue.42, pp.35-47, 2010.

A. M. Smith, F. R. Adler, R. M. Ribeiro, R. N. Gutenkunst, J. L. Mcauley et al.,

, Kinetics of coinfection with influenza A virus and streptococcus pneumoniae, vol.9, p.1003238, 2013.

, Strong inference in mathematical modeling: a method for robust science in 397 the twenty-first century. Frontiers in Microbiology, vol.7, p.13, 2016.

S. T. Buckland, K. P. Burnham, and N. H. Augustin, Model selection: an integral part of inference

, Biometrics, vol.53, issue.2, p.603, 1997.

, Ten simple rules for reducing overoptimistic reporting in 403 methodological computational research. Lewitter F, editor. PLOS Computational 404 Biology, vol.11, p.1004191, 2015.

P. Kirk, A. C. Babtie, and M. Stumpf, Systems biology (un)certainties. Science, vol.350, pp.386-394, 2015406-10-23.

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference: a practical 408 information-theoretic approach. 2, vol.409, p.p, 2010.

G. Claeskens and N. L. Hjort, Model selection and model averaging, p.411, 2008.

K. Best, J. Guedj, V. Madelain, X. De-lamballerie, S. Lim et al., Zika plasma 414 viral dynamics in nonhuman primates provides insights into early infection and antiviral 415 strategies, Proceedings of the National Academy of Sciences, vol.114, pp.8847-52, 2017.

V. Madelain, S. Baize, F. Jacquot, R. S. Fizet, A. Barron et al., Ebola viral 418 dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and 419 antiviral strategies, Nature Communications, vol.9, issue.1, 2018.

J. Bertrand, E. Comets, and F. Mentré, Comparison of model-based tests and selection 421 strategies to detect genetic polymorphisms influencing pharmacokinetic parameters, Journal of Biopharmaceutical Statistics, vol.422, issue.6, pp.1084-102, 2008.

H. Bozdogan, Model selection and Akaike's Information Criterion (AIC): The general 424 theory and its analytical extensions, Psychometrika, vol.52, issue.3, pp.345-70, 1987.

D. R. Anderson and K. P. Burnham, Understanding information criteria for selection among 426 capture-recapture or ring recovery models. Bird Study, vol.46, pp.14-21, 1999.

A. A. Neath and J. E. Cavanaugh, The Bayesian information criterion: background, derivation, 428 and applications: The Bayesian information criterion, WIREs Comp Stat, vol.4, issue.2, pp.199-203, 2012429-03.

S. Buatois, S. Ueckert, N. Frey, S. Retout, and F. Mentré, Comparison of model averaging and 431 model selection in dose finding trials analyzed by nonlinear mixed effect models, AAPS 432 J, vol.20, issue.3, p.56, 201829.

Y. Aoki, D. Röshammar, B. Hamrén, and A. C. Hooker, Model selection and averaging of 434 nonlinear mixed-effect models for robust phase III dose selection, J Pharmacokinet, vol.435, issue.6, pp.581-97, 2017.

Y. Kakizoe, S. Nakaoka, C. Beauchemin, S. Morita, H. Mori et al., A 437 method to determine the duration of the eclipse phase for in vitro infection with a highly 438 pathogenic SHIV strain. Sci Rep, vol.5, p.10371, 2015.

X. Xia and C. H. Moog, Identifiability of nonlinear systems with application to HIV/AIDS 440 models, IEEE Transactions on Automatic Control, vol.48, issue.2, pp.330-336, 2003.

H. Wu, H. Zhu, H. Miao, and A. S. Perelson, , p.442

, HIV/AIDS dynamic models, Bulletin of Mathematical Biology, vol.70, issue.3, pp.785-99, 2008.

H. Miao, C. Dykes, L. M. Demeter, J. Cavenaugh, S. Y. Park et al., Modeling 444 and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-445 cytometry-based growth competition experiments, Bulletin of Mathematical Biology, vol.446, issue.6, pp.1749-71, 2008.

C. Dumont, G. Lestini, L. Nagard, H. Mentré, F. Comets et al., PFIM 4.0, 448 an extended R program for design evaluation and optimization in nonlinear mixed-effect 449 models, Computer Methods and Programs in Biomedicine, vol.156, pp.217-246, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01698017

P. Baccam, C. Beauchemin, C. A. Macken, F. G. Hayden, and A. S. Perelson, Kinetics of influenza 451 A virus infection in humans, J Virol, vol.80, issue.15, pp.7590-7599, 2006.

K. A. Pawelek, G. T. Huynh, M. Quinlivan, A. Cullinane, L. Rong et al., Modeling 453 within-host dynamics of influenza virus infection including immune responses, p.454

, Comput Biol, vol.8, issue.6, 2012.

J. Pinheiro, B. Bornkamp, E. Glimm, and F. Bretz, Model-based dose finding under model 457 uncertainty using general parametric models, Statist Med, vol.33, issue.10, pp.1646-61, 2014.

K. Schorning, B. Bornkamp, F. Bretz, and H. Dette, Model selection versus model averaging in 459 dose finding studies: K. SCHORNING ET AL, Statistics in Medicine, vol.35, issue.22, pp.4021-4061, 2016.

R. A. Saenz, M. Quinlivan, E. D. Macrae, S. Blunden, A. S. Mumford et al.,

, Dynamics of influenza virus infection and pathology, J Virol, vol.84, issue.8, pp.3974-83, 2010.

J. A. Hoeting, A. E. Raftery, and D. Madigan, Bayesian model averaging: a tutorial. Statist 464 Sci, vol.14, pp.382-417, 1999.

K. P. Burnham and D. R. Anderson, Model selection and multimodel inference: a practical 466 information-theoretic approach. 2, vol.467, p.p, 2010.

A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle: 469 limitations of studies of viral load data, Proceedings: Biological Sciences, vol.470, pp.847-54, 1469.

R. M. Ribeiro, L. Qin, L. L. Chavez, D. Li, S. G. Self et al., Estimation of the initial 472 viral growth rate and basic reproductive number during acute HIV-1 infection, Journal of 473 Virology, vol.84, issue.12, pp.6096-102, 2010.

, Figure 1. Viral kinetics profiles obtained with the population parameters for each 495 candidate model. (A) and (B) correspond to the simulation settings I and II, respectively, p.496

, At left, the first 3 curves correspond to models with k = 497 20 d -1 ; center, models with k = 4 d -1 and right, models with k = 1 d -1 . Within each group