D. Pascolini and S. P. Mariotti, Global estimates of visual impairment: 2010, Br. J. Ophthalmol, vol.96, pp.614-618, 2012.

J. P. Whitcher and M. P. Upadhyay, Corneal blindness: a global perspective, Bull. World Health Organ, vol.79, pp.214-221, 2001.

, Universal Eye Health: A Global Action Plan, 2013.

J. Mascarenhas, Acanthamoeba, fungal, and bacterial keratitis: a comparison of risk factors and clinical features, Am. J. Ophthalmol, vol.157, pp.56-62, 2014.

D. Huang, Optical coherence tomography. Science, vol.254, pp.1178-1181, 1991.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, 2015.

R. F. Steinert and D. Huang, Anterior Segment Optical Coherence Tomography, 2008.

H. D. Cavanagh, Clinical and diagnostic use of in vivo confocal microscopy in patients with corneal disease, Ophthalmology, vol.100, pp.1444-1454, 1993.

R. F. Guthoff, A. Zhivov, and O. Stachs, In vivo confocal microscopy, an inner vision of the cornea -a major review, Clin. Exp. Ophthalmol, vol.37, pp.100-117, 2009.

V. Mazlin, In vivo high resolution human corneal imaging using fullfield optical coherence tomography, Biomed. Opt. Express, vol.9, p.557, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01737927

E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-jalmes, Full-field optical coherence microscopy, Opt. Lett, vol.23, p.244, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02372514

A. Dubois, Handbook of Full-Field Optical Coherence Microscopy: Technology and Applications, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758479

K. Grieve, In vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography, Opt. Express, vol.13, p.6286, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00533146

K. Grieve, Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography, Investig.Opthalmol. Vis. Sci, vol.45, p.4126, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00533150

B. Tan, 250 kHz, 1,5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea, Biomed. Opt. Express, vol.9, p.6569, 2018.

K. Bizheva, In-vivo imaging of the palisades of Vogt and the limbal crypts with sub-micrometer axial resolution optical coherence tomography, Biomed. Opt. Express, vol.8, p.4141, 2017.

W. M. Petroll, M. Weaver, S. Vaidya, J. P. Mcculley, and H. D. Cavanagh, Quantitative 3-dimensional corneal imaging in vivo Using a modified HRT-RCM confocal microscope, Cornea, vol.32, pp.36-43, 2013.

S. Labiau, G. David, S. Gigan, and A. C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Opt. Lett, vol.34, p.1576, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00448239

R. De-kinkelder, Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina, Investig. Opthalmol. Vis. Sci, vol.52, p.3908, 2011.

R. F. Guthoff, C. Baudouin, and J. Stave, Atlas of Confocal Laser Scanning Invivo Microscopy in Ophthalmology, 2006.

D. V. Patel and C. N. Mcghee, Mapping of the normal human corneal subbasal nerve plexus by in vivo laser scanning confocal microscopy, Investig. Opthalmol. Vis. Sci, vol.46, p.4485, 2005.

S. Allgeier, 3D confocal laser-scanning microscopy for large-area imaging of the corneal subbasal nerve plexus, Sci. Rep, vol.8, pp.1-10, 2018.

B. S. Shaheen, M. Bakir, and S. Jain, Corneal nerves in health and disease, Surv. Ophthalmol, vol.59, pp.263-285, 2014.

E. Meijering, Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images, Cytometry, vol.58, pp.167-176, 2004.

R. A. Copeland and N. Afshari, Copeland and Afshari's Principles and Practice of Cornea, JP Medical Ltd, 2013.

J. Berlau, H. Becker, J. Stave, C. Oriwol, and R. F. Guthoff, Depth and agedependent distribution of keratocytes in healthy human corneas: a study using scanning-slit confocal microscopy in vivo, J. Cataract Refract. Surg, vol.28, pp.611-616, 2002.

D. A. Dartt, Ocular Periphery and Disorders, 2011.

S. J. Tuft and D. J. Coster, The corneal endothelium. Eye, vol.4, pp.389-424, 1990.

B. E. Mccarey, H. F. Edelhauser, and M. J. Lynn, Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions, Cornea, vol.27, pp.1-16, 2008.

P. Xiao, In vivo high-resolution human retinal imaging with wavefrontcorrectionless full-field OCT, Optica, vol.5, p.409, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788875

P. Xiao, M. Fink, and A. C. Boccara, Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations, Opt. Lett, vol.41, p.3920, 2016.

Y. Komai and T. Ushiki, The three-dimensional organization of collagen fibrils in the human cornea and sclera, Invest. Ophthalmol. Vis. Sci, vol.32, pp.2244-2258, 1991.

T. Zheng, Q. Le, J. Hong, and J. Xu, Comparison of human corneal cell density by age and corneal location: an in vivo confocal microscopy study, BMC Ophthalmol, vol.16, p.109, 2016.

V. Aranha-dos-santos, Super-resolved thickness maps of thin film phantoms and in vivo visualization of tear film lipid layer using OCT, Biomed. Opt. Express, vol.7, p.2650, 2016.

H. Owens and J. Phillips, Spreading of the tears after a blink: velocity and stabilization time in healthy eyes, PubMed-NCBI. Cornea, vol.20, pp.484-487, 2001.

J. Németh, High-speed videotopographic measurement of tear film build-up tme, Invest. Ophthalmol. Vis. Sci, vol.43, pp.1783-1790, 2002.

A. Vogt and R. Heydt, Atlas of the slitlamp-microscopy of the living eye, 1921.

K. Grieve, Three-dimensional structure of the mammalian limbal stem cell niche, Exp. Eye Res, vol.140, pp.75-84, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191771

A. Cruzat, D. Pavan-langston, and P. Hamrah, In vivo confocal microscopy of corneal nerves: analysis and clinical correlation, Semin. Ophthalmol, vol.25, pp.171-177, 2010.

A. Khan, Corneal confocal microscopy detects a reduction in corneal endothelial cells and nerve fibres in patients with acute ischemic stroke, Sci. Rep, vol.8, pp.1-8, 2018.

J. Guillon, Non-invasive tearscope plus routine for contact lens fitting, Contact Lens Anterior Eye, vol.21, pp.31-40, 1998.

D. V. Patel, T. Sherwin, and C. N. Mcghee, Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus, Investig. Opthalmol. Vis. Sci, vol.47, p.2823, 2006.

P. Aydin, Y. A. Akova, and S. Kadayifçilar, Anterior segment indocyanine green angiography in scleral inflammation, Eye, vol.14, pp.211-215, 2000.

B. Sebastian and P. S. Dittrich, Microfluidics to mimic blood flow in health and disease, Annu. Rev. Fluid Mech, vol.50, pp.483-504, 2018.

S. Patel and L. Tutchenko, The refractive index of the human cornea: a review, Contact Lens Anterior Eye, vol.42, pp.575-580, 2019.

Q. Tseng, Spatial organization of the extracellular matrix regulates cellcell junction positioning, Proc. Natl Acad. Sci, vol.109, pp.1506-1511, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00673247

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

J. Scholler, Probing dynamic processes in the eye at multiple spatial and temporal scales with multimodal full field OCT, Biomed. Opt. Express, vol.10, p.731, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02024973

K. Grieve, Stromal striae: a new insight into corneal physiology and mechanics, Sci. Rep, vol.7, pp.1-11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630007

, M. wrote the software and performed the imaging experiments

K. I. and K. ,

M. , K. I. , K. G. , and A. C. , analyzed the acquired data. J.S. conceived and developed algorithms for obtaining quantitative blood flow velocity and orientation maps. K.G. (native English speaker) edited for language