C. Guignabert, L. Tu, L. Hiress, and M. , Pathogenesis of pulmonary arterial hypertension: lessons from cancer, Eur Respir Rev, vol.22, pp.543-551, 2013.

O. Boucherat, G. Vitry, and I. Trinh, The cancer theory of pulmonary arterial hypertension, Pulm Circ, vol.7, pp.285-299, 2017.

P. R. Rai, C. D. Cool, and J. King, The cancer paradigm of severe pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.178, pp.558-564, 2008.

J. De and V. A. Perez, Molecular pathogenesis and current pathology of pulmonary hypertension, Heart Fail Rev, vol.21, pp.239-257, 2016.

T. Thenappan, M. L. Ormiston, and J. J. Ryan, Pulmonary arterial hypertension: pathogenesis and clinical management, BMJ, vol.360, 2018.

J. A. Leopold and B. A. Maron, Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension, Int J Mol Sci, vol.17, p.761, 2016.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

S. S. Pullamsetti, R. Savai, and W. Seeger, Translational advances in the field of pulmonary hypertension. From cancer biology to new pulmonary arterial hypertension therapeutics. Targeting cell growth and proliferation signaling hubs, Am J Respir Crit Care Med, vol.195, pp.425-437, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

N. F. Voelkel, C. Cool, and S. D. Lee, Primary pulmonary hypertension between inflammation and cancer, Chest, vol.114, pp.225-230, 1998.

R. T. Schermuly, E. Dony, and H. A. Ghofrani, Reversal of experimental pulmonary hypertension by PDGF inhibition, J Clin Inves, vol.115, pp.2811-2821, 2005.

R. M. Tuder, M. Chacon, and L. Alger, Expression of angiogenesis-related molecules in plexiform lesions in severe pulmonary hypertension: evidence for a process of disordered angiogenesis, J Pathol, vol.195, pp.367-374, 2001.

D. A. Goncharov, T. V. Kudryashova, and H. Ziai, mTORC2 coordinates pulmonary artery smooth muscle cell metabolism, proliferation and survival in pulmonary arterial hypertension, Circulation, vol.129, pp.864-874, 2014.

R. Rajkumar, K. Konishi, and T. J. Richards, Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension, Am J Physiol Heart Circ Physiol, vol.298, pp.1235-1248, 2010.

M. Patel, D. Predescu, and R. Tandon, A novel p38 mitogenactivated protein kinase/Elk-1 transcription factor-dependent molecular mechanism underlying abnormal endothelial cell proliferation in plexogenic pulmonary arterial hypertension, J Biol Chem, vol.288, pp.25701-25716, 2013.

K. S. Awad, J. M. Elinoff, and S. Wang, Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells, Am J Physiol Lung Cell Mol Physiol, vol.310, pp.187-201, 2016.

J. L. Wilson, J. Yu, and L. Taylor, Hyperplastic growth of pulmonary artery smooth muscle cells from subjects with pulmonary arterial hypertension is activated through JNK and p38 MAPK, PLoS One, vol.10, p.123662, 2015.

T. V. Kudryashova, D. A. Goncharov, and A. Pena, HIPPOintegrin linked kinase crosstalk controls self-sustaining proliferation and survival in pulmonary hypertension, Am J Respir Crit Care Med, vol.194, pp.866-877, 2016.

T. Bertero, K. A. Cottrill, and Y. Lu, Matrix remodeling promotes pulmonary hypertension through feedback mechanoactivation of the YAP/TAZ-miR-130/301 circuit, Cell Rep, vol.13, pp.1016-1032, 2015.

Z. Dai, M. M. Zhu, and Y. Peng, Endothelial and smooth muscle cell interaction via FoxM1 signaling mediates vascular remodeling and pulmonary hypertension, Am J Respir Crit Care Med, vol.198, pp.788-802, 2018.

K. C. El-kasmi, S. C. Pugliese, and S. R. Riddle, Adventitial fibroblasts induce a distinct pro-inflammatory/pro-fibrotic macrophage phenotype in pulmonary hypertension, J Immunol, vol.193, pp.597-609, 2014.

R. Savai, H. M. Al-tamari, and D. Sedding, Pro-proliferative and inflammatory signaling converge on FoxO1 transcription factor in pulmonary hypertension, Nat Med, vol.20, pp.1289-1300, 2014.

S. Ameshima, H. Golpon, and C. D. Cool, Peroxisome proliferator-activated receptor gamma (PPARgamma) expression is decreased in pulmonary hypertension and affects endothelial cell growth, Circ Res, vol.92, pp.1162-1169, 2003.

H. Horita, S. B. Furgeson, and A. Ostriker, Selective inactivation of PTEN in smooth muscle cells synergizes with hypoxia to induce severe pulmonary hypertension, J Am Heart Assoc, vol.2, p.188, 2013.

R. A. Nemenoff, P. A. Simpson, and S. B. Furgeson, Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived factor-1{alpha}, Circ Res, vol.102, pp.1036-1045, 2008.

J. Yu, J. Wilson, and L. Taylor, DNA microarray and signal transduction analysis in pulmonary artery smooth muscle cells from heritable and idiopathic pulmonary arterial hypertension subjects, J Cell Biochem, vol.116, pp.386-397, 2015.

N. Mouraret, M. E. Abid, and S. , Activation of lung p53 by Nutlin-3a prevents and reverses experimental pulmonary hypertension, Circulation, vol.127, pp.1664-1676, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00829264

M. W. Geraci, M. Moore, and T. Gesell, Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis, Circ Res, vol.88, pp.555-562, 2001.

R. Paulin, A. Courboulin, and J. Meloche, Signal transducers and activators of transcription-3/pim1 axis plays a critical role in the pathogenesis of human pulmonary arterial hypertension, Circulation, vol.123, pp.1205-1215, 2011.

M. S. Mcmurtry, S. L. Archer, and D. C. Altieri, Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension, J Clin Invest, vol.115, pp.1479-1491, 2005.

H. Tang, J. Chen, and D. R. Fraidenburg, Deficiency of Akt1, but not Akt2, attenuates the development of pulmonary hypertension, Am J Physiol Lung Cell Mol Physiol, vol.308, pp.208-220, 2015.

D. , A. A. , E. Kasmi, and K. C. Plecita´-hlavata´l, Hallmarks of pulmonary hypertension: mesenchymal and inflammatory cell metabolic reprogramming, Antiox Redox Signal, vol.28, pp.230-250, 2018.

G. Sutendra and E. D. Michelakis, The metabolic basis of pulmonary arterial hypertension, Cell Metab, vol.19, pp.558-573, 2014.

C. Sy and L. J. Rubin, Metabolic dysfunction in pulmonary hypertension: from basic science to clinical practice, Eur Respir Rev, vol.26, 2017.

S. L. Archer, Y. H. Fang, and J. J. Ryan, Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension, Pulm Circ, vol.3, pp.144-152, 2013.

F. A. Masri, W. Xu, and S. A. Comhair, Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension, Am J Physiol Lung Cell Mol Physiol, vol.293, pp.548-554, 2007.

I. Fijalkowska, W. Xu, and S. Comhair, Hypoxia inducible-factor1a regulates the metabolic shift of pulmonary hypertensive endothelial cells, Am J Pathol, vol.176, pp.1130-1138, 2010.

H. Zhang, D. Wang, and M. Li, Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis, Circulation, vol.136, pp.2468-2485, 2017.

J. Ryan, A. Dasgupta, and J. Huston, Mitochondrial dynamics in pulmonary arterial hypertension, J Mol Med (Berl), vol.93, pp.229-242, 2015.

T. Bertero, W. M. Oldham, and K. A. Cottrill, Vascular stiffness mechanoactivates YAP/TAZ-dependent glutaminolysis to drive pulmonary hypertension, J Clin Invest, vol.126, pp.3313-3335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02479282

G. Sutendra, S. Bonnet, and G. Rochefort, Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension, Sci Transl Med, vol.2, pp.44-58, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02476445

S. D. Lee, K. R. Shroyer, and N. E. Markham, Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension, J Clin Invest, vol.101, pp.927-934, 1998.

N. Mouraret, A. Houssaini, and S. Abid, Role for telomerase in pulmonary hypertension, Circulation, vol.131, pp.742-755, 2015.

M. Rabinovitch, C. Guignabert, and M. Humbert, Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension, Circ Res, vol.115, pp.165-175, 2014.

R. Tamosiuniene, O. Manouvakhova, and P. Mesange, Dominant role for regulatory T cells in protecting females against pulmonary hypertension, Circ Res, vol.122, pp.1689-1702, 2018.

M. R. Nicolls and N. F. Voelkel, The roles of immunity in the prevention and evolution of pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.195, pp.1292-1299, 2017.

C. Li, P. Liu, and R. Song, Immune cells and autoantibodies in pulmonary arterial hypertension, Acta Biochim Biophys Sin, vol.49, pp.1047-1057, 2017.

R. Savai, S. S. Pullamsetti, and J. Kolbe, Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.186, pp.897-908, 2012.

F. Soubrier, W. K. Chung, and R. Machado, Genetics and genomics of pulmonary arterial hypertension, J Am Coll Cardiol, vol.62, pp.13-21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02137830

M. E. Yeager, G. R. Halley, and H. A. Golpon, Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension, Circ Res, vol.88, pp.2-11, 2001.

M. A. Aldred, S. A. Comhair, and M. Varella-garcia, Somatic chromosome abnormalities in the lungs of patients with pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.182, pp.1153-1160, 2010.

K. M. Drake, S. A. Comhair, and S. C. Erzurum, Endothelial chromosome 13 deletion in congenital heart disease-associated pulmonary arterial hypertension dysregulates SMAD9 signaling, Am J Respir Crit Care Med, vol.191, pp.850-854, 2015.

J. Meloche, A. Pflieger, and M. Vaillancourt, Role for DNA damage signaling in pulmonary arterial hypertension, Circulation, vol.129, pp.786-797, 2014.

J. De, V. A. Perez, K. Yuan, and M. A. Lyuksyutova, Wholeexome sequencing reveals TopBP1 as a novel gene in idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.189, pp.1260-1272, 2014.

B. Ranchoux, J. Meloche, and R. Paulin, DNA damage and pulmonary hypertension, Int J Mol Sci, vol.17, p.990, 2016.

S. Sa, M. Gu, and J. Chappell, Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity, Am J Respir Crit Care Med, vol.195, pp.930-941, 2017.

M. Gu, N. Y. Shao, and S. Sa, Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers, Cell Stem Cell, vol.20, pp.490-504, 2017.

L. Tu, F. S. De-man, and B. Girerd, A critical role for p130Cas in the progression of pulmonary hypertension in humans and rodents, Am J Respir Crit Care Med, vol.186, pp.666-676, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00905191

L. Tu, L. Dewachter, and B. Gore, Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension, Am J Respir Cell Mol Biol, vol.45, pp.311-322, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00579959

T. V. Kudryashova, D. A. Goncharov, and A. Pena, HIPPO-Integrin-linked kinase cross-talk controls self-sustaining proliferation and survival in pulmonary hypertension, Am J Respir Crit Care Med, vol.194, pp.866-877, 2016.

H. Zhang, D. Wang, and M. Li, Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis, Circulation, vol.136, pp.2468-2485, 2017.

M. Izikki, C. Guignabert, and E. Fadel, Endothelial-derived FGF2 contributes to the progression of pulmonary hypertension in humans and rodents, J Clin Invest, vol.119, pp.512-523, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00499635

S. Hirose, Y. Hosoda, and S. Furuya, Expression of vascular endothelial growth factor and its receptors correlates closely with formation of the plexiform lesion in human pulmonary hypertension, Pathol Int, vol.50, pp.472-479, 2000.

S. Sa, M. Gu, and J. Chappell, iPSC model of pulmonary arterial hypertension reveals novel gene expression and patient specificity, Am J Respir Crit Care Med, 2016.

N. Ricard, L. Tu, L. Hiress, and M. , Increased pericyte coverage mediated by endothelial-derived fibroblast growth factor-2 and interleukin-6 is a source of smooth muscle-like cells in pulmonary hypertension, Circulation, vol.129, pp.1586-1597, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02578269

K. Yuan, M. E. Orcholski, and C. Panaroni, Activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment during pulmonary angiogenesis, Am J Pathol, vol.185, pp.69-84, 2015.

L. Yan, X. Chen, and M. Talati, Bone marrow-derived cells contribute to the pathogenesis of pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.193, pp.898-909, 2016.

S. Graf, M. Haimel, and M. Bleda, Identification of rare sequence variation underlying heritable pulmonary arterial hypertension, Nat Commun, vol.9, p.1416, 2018.

C. Guignabert, L. Tu, and B. Girerd, New molecular targets of pulmonary vascular remodeling in pulmonary arterial hypertension: importance of endothelial communication, Chest, vol.147, pp.529-537, 2015.

C. Guignabert, L. Tu, L. Hiress, and M. , Pathogenesis of pulmonary arterial hypertension: lessons from cancer, Eur Respir Rev, vol.22, pp.543-551, 2013.

, Humbert M. Impression, sunset. Circulation, vol.127, pp.1098-1100, 2013.

J. J. Moslehi, Cardiovascular toxic effects of targeted cancer therapies, N Engl J Med, vol.375, pp.1457-1467, 2016.

K. R. Stenmark, M. E. Yeager, E. Kasmi, and K. C. , The adventitia: essential regulator of vascular wall structure and function, Annu Rev Physiol, vol.75, pp.23-47, 2013.

M. W. Majesky, X. R. Dong, and V. Hoglund, The adventitia: a dynamic interface containing resident progenitor cells, Arterioscler Thromb Vasc Biol, vol.31, pp.1530-1539, 2011.

D. N. Meijles and P. J. Pagano, Nox and inflammation in the vascular adventitia, Hypertension, vol.67, pp.14-19, 2016.

C. D. Buckley, F. Barone, and S. Nayar, Stromal cells in chronic inflammation and tertiary lymphoid organ formation, Annu Rev Immunol, vol.33, pp.715-745, 2015.

P. Libby, Fanning the flames: inflammation in cardiovascular diseases, Cardiovasc Res, vol.107, pp.307-309, 2015.

P. Libby and G. K. Hansson, Inflammation and immunity in diseases of the arterial tree: players and layers, Circ Res, vol.116, pp.307-311, 2015.

K. Maiellaro and W. R. Taylor, The role of the adventitia in vascular inflammation, Cardiovasc Res, vol.75, pp.640-648, 2007.

J. Wang, Y. Wang, and J. Wang, Adventitial activation in the pathogenesis of injury-induced arterial remodeling: potential implications in transplant vasculopathy, Am J Pathol, vol.188, pp.838-845, 2018.

N. A. Bhowmick, E. G. Neilson, and H. L. Moses, Stromal fibroblasts in cancer initiation and progression, Nature, vol.432, pp.332-337, 2004.

J. Herrmann, S. Samee, and A. Chade, Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling, Arterioscler Thromb Vasc Biol, vol.25, pp.447-453, 2005.

M. L. Kortelainen and K. Porvari, Adventitial macrophage and lymphocyte accumulation accompanying early stages of human coronary atherogenesis, Cardiovasc Pathol, vol.23, pp.193-197, 2014.

M. A. Nagel, I. Traktinskiy, and Y. Azarkh, Varicella zoster virus vasculopathy: analysis of virus-infected arteries, Neurology, vol.77, pp.364-370, 2011.

N. A. Scott, G. D. Cipolla, and C. E. Ross, Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries, Circulation, vol.93, pp.2178-2187, 1996.

Y. Shi, M. Pieniek, and A. Fard, Adventitial remodeling after coronary arterial injury, Circulation, vol.93, pp.340-348, 1996.

G. Li, S. J. Chen, and S. Oparil, Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries, Circulation, vol.101, pp.1362-1365, 2000.

J. K. Belknap, E. C. Orton, and B. Ensley, Hypoxia increases bromodeoxyuridine labeling indices in bovine neonatal pulmonary arteries, Am J Respir Cell Mol Biol, vol.16, pp.366-371, 1997.

B. Meyrick and L. Reid, Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall, Am J Pathol, vol.96, pp.51-70, 1979.

F. Rose, F. Grimminger, and J. Appel, Hypoxic pulmonary artery fibroblasts trigger proliferation of vascular smooth muscle cells: role of hypoxia-inducible transcription factors, FASEB J, vol.16, pp.1660-1661, 2002.

K. C. El-kasmi, S. C. Pugliese, and S. R. Riddle, Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension, J Immunol, vol.193, pp.597-609, 2014.

C. J. Hu, H. Zhang, and A. Laux, Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension, J Physiol, vol.597, pp.1103-1119, 2018.

D. Wang, H. Zhang, and M. Li, MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts, Circ Res, vol.114, pp.67-78, 2014.

G. Tellides and J. S. Pober, Inflammatory and immune responses in the arterial media, Circ Res, vol.116, pp.312-322, 2015.

R. Savai, S. S. Pullamsetti, and J. Kolbe, Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.186, pp.897-908, 2012.

N. J. Davie, E. V. Gerasimovskaya, and S. E. Hofmeister, Pulmonary artery adventitial fibroblasts cooperate with vasa vasorum endothelial cells to regulate vasa vasorum neovascularization: a process mediated by hypoxia and endothelin-1, Am J Pathol, vol.168, pp.1793-1807, 2006.

D. Montani, F. Perros, and N. Gambaryan, C-kit-positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.184, pp.116-123, 2011.

V. W. Van-hinsbergh, E. Ec, and M. J. Daemen, Neovascularization of the atherosclerotic plaque: interplay between atherosclerotic lesion, adventitia-derived microvessels and perivascular fat, Curr Opin Lipidol, vol.26, pp.405-411, 2015.

K. Pels, M. Labinaz, and C. Hoffert, Adventitial angiogenesis early after coronary angioplasty: correlation with arterial remodeling, Arterioscler Thromb Vasc Biol, vol.19, pp.229-238, 1999.

P. Dorfmuller, S. Gunther, and M. R. Ghigna, Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature, Eur Respir J, vol.44, pp.1275-1288, 2014.

C. Galambos, S. Sims-lucas, and S. H. Abman, Intrapulmonary bronchopulmonary anastomoses and plexiform lesions in idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.193, pp.574-576, 2016.

F. Perros, P. Dorfmuller, and D. Montani, Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.185, pp.311-321, 2012.

T. Saito, K. Miyagawa, and S. Y. Chen, Upregulation of human endogenous retrovirus-K is linked to immunity and inflammation in pulmonary arterial hypertension, Circulation, vol.136, pp.1920-1935, 2017.

M. Li, S. R. Riddle, and M. G. Frid, Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension, J Immunol, vol.187, pp.2711-2722, 2011.

E. Stacher, B. B. Graham, and J. M. Hunt, Modern age pathology of pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.186, pp.261-272, 2012.

L. M. Marsh, K. Jandl, and G. Grunig, The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension, Eur Respir J, vol.51, 2018.

J. Hoffmann, L. M. Marsh, and M. Pieper, Compartment-specific expression of collagens and their processing enzymes in intrapulmonary arteries of IPAH patients, Am J Physiol Lung Cell Mol Physiol, vol.308, pp.1002-1013, 2015.

J. Hoffmann, J. Wilhelm, and L. M. Marsh, Distinct differences in gene expression patterns in pulmonary arteries of patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis with pulmonary hypertension, Am J Respir Crit Care Med, vol.190, pp.98-111, 2014.

S. Crnkovic, L. M. Marsh, E. Agha, and E. , Resident cell lineages are preserved in pulmonary vascular remodeling, J Pathol, vol.244, pp.485-498, 2018.

B. Meyrick and L. Reid, The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study, Lab Invest, vol.38, pp.188-200, 1978.

H. C. Rosenberg and M. Rabinovitch, Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension, Am J Physiol, vol.255, pp.1484-1491, 1988.

L. Taraseviciene-stewart, Y. Kasahara, and L. Alger, Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension, FASEB J, vol.15, pp.427-438, 2001.

R. T. Schermuly, E. Dony, and H. A. Ghofrani, Reversal of experimental pulmonary hypertension by PDGF inhibition, J Clin Invest, vol.115, pp.2811-2821, 2005.

V. Biasin, K. Chwalek, and J. Wilhelm, Endothelin-1 driven proliferation of pulmonary arterial smooth muscle cells is c-fos dependent, Int J Biochem Cell Biol, vol.54, pp.137-148, 2014.

V. V. Mclaughlin, S. J. Shah, and R. Souza, Management of pulmonary arterial hypertension, J Am Coll Cardiol, vol.65, pp.1976-1997, 2015.

C. Guignabert, C. M. Alvira, and T. P. Alastalo, Tie2-mediated loss of peroxisome proliferator-activated receptor-gamma in mice causes PDGF receptor-beta-dependent pulmonary arterial muscularization, Am J Physiol Lung Cell Mol Physiol, vol.297, pp.1082-1090, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00499633

S. Majka, M. Hagen, and T. Blackwell, Physiologic and molecular consequences of endothelial Bmpr2 mutation, Respir Res, vol.12, p.84, 2011.

Z. Dai, M. Li, and J. Wharton, Prolyl-4 hydroxylase 2 (PHD2) deficiency in endothelial cells and hematopoietic cells induces obliterative vascular remodeling and severe pulmonary arterial hypertension in mice and humans through hypoxia-inducible factor-2alpha, Circulation, vol.133, pp.2447-2458, 2016.

A. Q. Sheikh, F. Z. Saddouk, and A. Ntokou, Cell autonomous and non-cell autonomous regulation of SMC progenitors in pulmonary hypertension, Cell Rep, vol.23, pp.1152-1165, 2018.

A. Q. Sheikh, J. K. Lighthouse, and D. M. Greif, Recapitulation of developing artery muscularization in pulmonary hypertension, Cell Rep, vol.6, pp.809-817, 2014.

Z. Dai, M. M. Zhu, and Y. Peng, Endothelial and smooth muscle cell interaction via FoxM1 signaling mediates vascular remodeling and pulmonary hypertension, Am J Respir Crit Care Med, vol.198, pp.788-802, 2018.

Y. M. Kim, E. A. Barnes, and C. M. Alvira, Hypoxia-inducible factor-1alpha in pulmonary artery smooth muscle cells lowers vascular tone by decreasing myosin light chain phosphorylation, Circ Res, vol.112, pp.1230-1233, 2013.

G. Hansmann, J. De, V. A. Perez, and T. P. Alastalo, An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension, J Clin Invest, vol.118, pp.1846-1857, 2008.

F. Potus, S. Malenfant, and C. Graydon, Impaired angiogenesis and peripheral muscle microcirculation loss contribute to exercise intolerance in pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.190, pp.318-328, 2014.

A. Shimony, M. J. Eisenberg, and L. G. Rudski, Prevalence and impact of coronary artery disease in patients with pulmonary arterial hypertension, Am J Cardiol, vol.108, pp.460-464, 2011.

J. Meloche, M. C. Lampron, and V. Nadeau, Implication of inflammation and epigenetic readers in coronary artery remodeling in patients with pulmonary arterial hypertension, Arterioscler Thromb Vasc Biol, vol.37, pp.1513-1523, 2017.

N. P. Nickel, J. M. O'leary, and E. L. Brittain, Kidney dysfunction in patients with pulmonary arterial hypertension, Pulm Circ, vol.7, pp.38-54, 2017.

K. Asosingh, N. Wanner, and K. Weiss, Bone marrow transplantation prevents right ventricle disease in the caveolin-1-deficient mouse model of pulmonary hypertension, Blood Adv, vol.1, pp.526-534, 2017.

L. K. Hummers, A. Hall, and F. M. Wigley, Abnormalities in the regulators of angiogenesis in patients with scleroderma, J Rheumatol, vol.36, pp.576-582, 2009.

G. Bb and R. Kumar, Schistosomiasis and the pulmonary vasculature, Pulm Circ, vol.4, pp.353-362, 2013.

M. R. Ghigna, C. Guignabert, and D. Montani, BMPR2 mutation status influences bronchial vascular changes in pulmonary arterial hypertension, Eur Respir J, vol.48, pp.1668-1681, 2016.

R. T. Zamanian, G. Hansmann, and S. Snook, Insulin resistance in pulmonary arterial hypertension, Eur Respir J, vol.33, pp.318-324, 2009.

T. R. Assad and A. R. Hemnes, Metabolic dysfunction in pulmonary arterial hypertension, Curr Hypertens Rep, vol.17, p.20, 2015.

T. Czeczok, L. P. , and Y. E. , Plexogenic pulmonary hypertension associated with POEMS syndrome, Respir Med Case Rep, vol.22, pp.168-170, 2017.

Y. Okubo, M. Wakayama, and K. Kitahara, Pulmonary tumor thrombotic microangiopathy induced by gastric carcinoma: morphometric and immunohistochemical analysis of six autopsy cases, Diagn Pathol, vol.6, p.27, 2011.

L. Bitker, F. Sens, and C. Payet, Presence of kidney disease as an outcome predictor in patients with pulmonary arterial hypertension, Am J Nephrol, vol.47, pp.134-143, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02003933

S. Malenfant, F. Potus, and F. Fournier, Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension, J Mol Med, vol.93, pp.573-584, 2015.

N. F. Voelkel, In: Pulmonary hypertension: the present and future. Editor Malley J. Shelton CN: People's Medical Publishing House-USA, pp.1-9, 2011.

F. Perros, P. Dorfmuller, and R. Souza, Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension, Eur Respir J, vol.29, pp.462-468, 2007.

M. C. Tamby, Y. Chanseaud, and M. Humbert, Anti-endothelial cell antibodies in idiopathic and systemic sclerosis associated pulmonary arterial hypertension, Thorax, vol.60, pp.765-772, 2005.

S. J. Arends, J. G. Damoiseaux, and A. M. Duijvestijn, Functional implications of IgG anti-endothelial cell antibodies in pulmonary arterial hypertension, Autoimmunity, vol.46, pp.463-470, 2013.

J. Thachil, The enigma of pulmonary hypertension after splenectomy-does the megakaryocyte provide a clue?, QJM, vol.102, pp.743-745, 2009.

R. W. Grant and V. D. Dixit, Adipose tissue as an immunological organ, Obesity (Silver Spring), vol.23, pp.512-518, 2015.

R. M. Tuder, S. L. Archer, and P. Dorfmuller, Relevant issues in the pathology and pathobiology of pulmonary hypertension, J Am Coll Cardiol, vol.62, pp.4-12, 2013.

N. F. Voelkel, In: Pulmonary hypertension: the present and future, pp.11-17, 2011.

O. Boucherat, T. Peterlini, and A. Bourgeois, Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.198, pp.90-103, 2018.

A. Dean, T. Gregorc, and C. K. Docherty, Role of the aryl hydrocarbon receptor in sugen 5416-induced experimental pulmonary hypertension, Am J Respir Cell Mol Biol, vol.58, pp.320-330, 2018.

R. L. Meyrick and B. , Hypoxia and pulmonary vascular endothelium, Ciba Found Symp, vol.78, pp.37-60, 1980.

T. Stevens and M. N. Gillespie, The hyperproliferative endothelial cell phenotype in idiopathic pulmonary arterial hypertension, Am J Physiol Lung Cell Mol Physiol, vol.293, pp.546-547, 2007.

M. E. Yeager, G. R. Halley, and H. A. Golpon, Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension, Circ Res, vol.88, pp.2-11, 2001.

N. F. Voelkel, J. Gomez-arroyo, and A. Abbate, Pathobiology of pulmonary arterial hypertension and right ventricular failure, Eur Respir J, vol.40, pp.1555-1565, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02612634

R. Damico, T. M. Kolb, and L. Valera, Serum endostatin is a genetically determined predictor of survival in pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.191, pp.208-218, 2015.

N. F. Voelkel and J. Gomez-arroyo, The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox, Am J Respir Cell Mol Biol, vol.51, pp.474-484, 2014.

N. F. Voelkel, R. W. Vandivier, and R. M. Tuder, Vascular endothelial growth factor in the lung, Am J Physiol Lung Cell Mol Physiol, vol.290, pp.209-221, 2006.

M. R. Nicolls and N. F. Voelkel, The roles of immunity in the prevention and evolution of pulmonary arterial hypertension, Am J Respir Crit Care Med, vol.195, pp.1292-1299, 2017.

G. A. Heresi, S. K. Malin, and J. W. Barnes, Abnormal glucose metabolism and high-energy expenditure in idiopathic pulmonary arterial hypertension, vol.14, pp.190-199, 2017.

D. Grinnan, G. Farr, and A. Fox, The role of hyperglycemia and insulin resistance in the development and progression of pulmonary arterial hypertension, J Diabetes Res, p.2481659, 2016.

A. Taraseviciute and N. F. Voelkel, Severe pulmonary hypertension in postmenopausal obese women, Eur J Med Res, vol.11, pp.198-202, 2006.

H. J. Bogaard, R. Natarajan, and S. C. Henderson, Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure, Circulation, vol.120, pp.1951-1960, 2009.

F. Potus, G. Ruffenach, and A. Dahou, Downregulation of MicroRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension, Circulation, vol.132, pp.932-943, 2015.

M. Sano, T. Minamino, and H. Toko, p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload, Nature, vol.446, pp.444-448, 2007.

J. I. Drake, H. J. Bogaard, and S. Mizuno, Molecular signature of a right heart failure program in chronic severe pulmonary hypertension, Am J Respir Cell Mol Biol, vol.45, pp.1239-1247, 2011.

M. E. Van-albada, R. M. Berger, and M. Niggebrugge, Prostacyclin therapy increases right ventricular capillarisation in a model for flow-associated pulmonary hypertension, Eur J Pharmacol, vol.549, pp.107-116, 2006.

B. B. Graham, D. Koyanagi, and B. Kandasamy, Right ventricle vasculature in human pulmonary hypertension assessed by stereology, Am J Respir Crit Care Med, vol.196, pp.1075-1077, 2017.

B. B. Graham, R. Kumar, and C. Mickael, Vascular adaptation of the right ventricle in experimental pulmonary hypertension, Am J Respir Cell Mol Biol, vol.59, pp.479-489, 2018.

T. M. Kolb, J. Peabody, and P. Baddoura, Right ventricular angiogenesis is an early adaptive response to chronic hypoxiainduced pulmonary hypertension, Microcirculation, vol.22, pp.724-736, 2015.