K. Burton, N. Kendall, and M. Disorders, The BMJ, 2014.

S. J. Duffield, B. M. Ellis, N. Goodson, K. Walker-bone, P. G. Conaghan et al.,

. Loftis, The contribution of musculoskeletal disorders in multimorbidity: Implications for practice and policy, Best Pract. Res. Clin. Rheumatol, 2017.

,

L. J. Raggatt and N. C. Partridge, Cellular and molecular mechanisms of bone remodeling, The J. Biol. Chem, 2010.

A. J. Houben and W. H. Moolenaar, Autotaxin and LPA receptor signaling in cancer, Cancer Metastasis Rev, 2011.

Y. C. Yung, N. C. Stoddard, and J. Chun, LPA receptor signaling: pharmacology, physiology, and pathophysiology, J. Lipid Res, 2014.

M. David, E. Wannecq, F. Descotes, S. Jansen, B. Deux et al.,

. Peyruchaud, Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts, PloS One, 2010.

A. Boucharaba, C. Serre, S. Gres, J. S. Saulnier-blache, J. Bordet et al.,

O. Clezardin and . Peyruchaud, Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer, J. Clin. Invest, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00110127

X. Wu, Y. Ma, N. Su, J. Shen, H. Zhang et al., Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration, Prostaglandins Other Lipid Mediat, 2019.

I. Gennero, S. Laurencin-dalicieux, F. Conte-auriol, F. Briand-mesange, D. Laurencin et al.,

N. Rue, N. Beton, M. Malet, A. Mus, P. Tokumura et al.,

J. P. Chun and . Salles, Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass, Bone, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00615224

,

M. David, I. Machuca-gayet, J. Kikuta, P. Ottewell, F. Mima et al.,

I. Ribeiro, R. L. Holen, P. Vales, J. Jurdic, P. Chun et al., Lysophosphatidic Acid Receptor Type 1 (LPA1) Plays a Functional Role in Osteoclast Differentiation and Bone Resorption Activity, J. Biol. Chem, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02353369

,

S. A. Karagiosis and N. J. Karin, Lysophosphatidic acid induces osteocyte dendrite outgrowth, Biochem. Biophys. Res. Commun, 2007.

S. An, T. Bleu, O. G. Hallmark, and E. J. Goetzl, Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid, J. Biol. Chem, 1998.

T. Nishioka, N. Arima, K. Kano, K. Hama, E. Itai et al., ATX-LPA1 axis contributes to proliferation of chondrocytes by regulating fibronectin assembly leading to proper cartilage formation, Sci. Rep, 2016.

S. M. Harrison, C. Reavill, G. Brown, J. T. Brown, J. E. Cluderay et al., LPA1 receptor-deficient mice have phenotypic changes observed in psychiatric disease, Mol. Cell. Neurosci, 2003.

J. J. Contos, N. Fukushima, J. A. Weiner, D. Kaushal, and J. Chun, Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior, 2000.

R. Dusaulcy, D. Daviaud, J. P. Pradere, S. Gres, P. Valet et al., Altered food consumption in mice lacking lysophosphatidic acid receptor-1, J. Physiol. Biochem, 2009.

G. Karsenty, Convergence between bone and energy homeostases: leptin regulation of bone mass, Cell Metab, 2006.

R. R. Rivera, M. Lin, E. C. Bornhop, and J. Chun, Conditional Lpar1 gene targeting identifies cell types mediating neuropathic pain, bioRxiv, 2002.

S. J. Rodda and A. P. Mcmahon, Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors, Development, 2006.

F. Montagner, V. Kaftandjian, D. Farlay, D. Brau, G. Boivin et al., Validation of a novel microradiography device for characterization of bone mineralization, J. Xray Sci
URL : https://hal.archives-ouvertes.fr/hal-01183712

. Technol, , 2015.

D. Farlay, M. E. Duclos, E. Gineyts, C. Bertholon, S. Viguet-carrin et al.,

D. Sockalingum, T. Bertrand, D. J. Roger, R. Hartmann, G. Chapurlat et al., The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue, PloS One, 2011.

,

D. Farlay, G. Panczer, C. Rey, P. D. Delmas, and G. Boivin, Mineral maturity and crystallinity index are distinct characteristics of bone mineral, J. Bone Miner. Metab, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00453448

M. Gardegaront, D. Farlay, O. Peyruchaud, and H. Follet, Automation of the Peak Fitting Method in Bone FTIR Microspectroscopy Spectrum Analysis: Human and Mice Bone Study, Journal of Spectrometry, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02353762

E. P. Paschalis, E. Dicarlo, F. Betts, P. Sherman, R. Mendelsohn et al., FTIR microspectroscopic analysis of human osteonal bone, Calcif. Tissue Int, 1996.

H. Sabra, M. Brunner, V. Mandati, B. Wehrle-haller, D. Lallemand et al.,

P. Chevalier, M. R. Guardiola, D. Block, and . Bouvard, beta1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin, J. Biol. Chem, 2017.

R. O. Oreffo, S. Romberg, A. S. Virdi, C. J. Joyner, S. Berven et al., Effects of interferon alpha on human osteoprogenitor cell growth and differentiation in vitro, J. Cell. Biochem, vol.74, 1999.

A. D. Bakker and J. Klein-nulend, Osteoblast isolation from murine calvaria and long bones, Methods Mol. Biol, 2012.

J. Y. Li, M. Yu, A. M. Tyagi, C. Vaccaro, E. Hsu et al., IL-17 Receptor Signaling in Osteoblasts/Osteocytes Mediates PTH-Induced Bone Loss and Enhances Osteocytic RANKL Production, J. Bone. Miner. Res, 2019.

M. Brunner, A. Millon-fremillon, G. Chevalier, I. A. Nakchbandi, D. Mosher et al., Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition, J. Cell Biol, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00610020

F. X. Yu, B. Zhao, N. Panupinthu, J. L. Jewell, I. Lian et al.,

H. Tumaneng, X. D. Li, G. B. Fu, K. L. Mills, and . Guan, Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling, Cell, 2012.

J. X. Pan, L. Xiong, K. Zhao, P. Zeng, B. Wang et al., YAP promotes osteogenesis and suppresses adipogenic differentiation by regulating ?-catenin signaling, Bone Res, 2018.

L. F. Bonewald, The Role of the Osteocyte in Bone and Nonbone Disease, Endocrinol. Metab. Clin. North Am, 2017.

K. A. Staines, B. Javaheri, P. Hohenstein, R. Fleming, E. Ikpegbu et al.,

D. J. Hopkinson, A. A. Buttle, C. Pitsillides, and . Farquharson, Hypomorphic conditional deletion of E11/Podoplanin reveals a role in osteocyte dendrite elongation, J. Cell. Physiol, 2017.

M. Ai, S. L. Holmen, W. Van-hul, B. O. Williams, and M. L. Warman, Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling, Mol. Cell. Biol, 2005.

S. L. Dallas, M. Prideaux, and L. F. Bonewald, The osteocyte: an endocrine cell ... and more, Endocr Rev, 2013.

E. Ikpegbu, L. Basta, D. N. Clements, R. Fleming, T. L. Vincent et al.,

K. A. Pitsillides, C. Staines, and . Farquharson, FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression, J. Cell Physiol, 2018.

,

J. Chen, Y. Shi, J. Regan, K. Karuppaiah, D. M. Ornitz et al., Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice, PloS One, 2014.

J. P. Mansell, M. Nowghani, M. Pabbruwe, I. C. Paterson, A. J. Smith et al., Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: requirement of albumin-bound LPA, Prostaglandins Other Lipid Mediat, 2011.

C. D. Kegelman, D. E. Mason, J. H. Dawahare, D. J. Horan, G. D. Vigil et al.,

T. M. Robling, J. D. Bellido, and . Boerckel, Skeletal cell YAP and TAZ combinatorially promote bone development, Faseb j, 2018.

C. D. Kegelman, J. C. Coulombe, K. M. Jordan, D. J. Horan, L. Qin et al.,

T. M. Ferguson, J. D. Bellido, and . Boerckel, YAP and TAZ Mediate Osteocyte Perilacunar/Canalicular Remodeling, J. Bone. Miner. Res, 2020.

,

D. Yasuda, D. Kobayashi, N. Akahoshi, T. Ohto-nakanishi, K. Yoshioka et al.,

S. Mizuno, S. Takahashi, and . Ishii, Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4, J. Clin. Invest, 2019.

Y. B. Liu, Y. Kharode, P. V. Bodine, P. J. Yaworsky, J. A. Robinson et al., LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4, J. Cell. Biochem, 2010.

J. P. Salles, S. Laurencin-dalicieux, F. Conte-auriol, F. Briand-mesange, and I. Gennero, Bone defects in LPA receptor genetically modified mice, Biochim Biophys Acta, 2013.

S. K. Murali, O. Andrukhova, E. L. Clinkenbeard, K. E. White, and R. G. Erben,

, Osteocytic Fgf23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice, PLoS Biol, 2016.

D. R. Eyre and M. A. Weis, Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta, Calcif. tissue Int, 2013.

D. B. Burr, Changes in bone matrix properties with aging, Bone, 2019.

M. H. Sheng, D. J. Baylink, W. G. Beamer, L. R. Donahue, C. J. Rosen et al.,

. Wergedal, Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth, Bone, 1999.

J. N. Farr, D. G. Fraser, H. Wang, K. Jaehn, M. B. Ogrodnik et al.,

. Khosla, Identification of Senescent Cells in the Bone Microenvironment, J. Bone. Miner. Res, 2016.

C. M. Andreasen, J. M. Delaisse, B. C. Van-der-eerden, J. Van-leeuwen, M. Ding et al.,

. Andersen, Understanding age-induced cortical porosity in women: Is a negative BMU balance in quiescent osteons a major contributor, Bone, 2018.

,

W. Bouleftour, L. Juignet, G. Bouet, R. N. Granito, A. Vanden-bossche et al.,

M. H. Aubin, L. Lafage-proust, and L. Vico, The role of the SIBLING, Bone Sialoprotein in skeletal biology -Contribution of mouse experimental genetics, Matrix biol, 2016.

D. Tokarz, J. S. Martins, E. T. Petit, C. P. Lin, M. B. Demay et al., Hormonal Regulation of Osteocyte Perilacunar and Canalicular Remodeling in the Hyp Mouse Model of X-Linked Hypophosphatemia, J. Bone. Miner. Res, 2018.

L. F. Bonewald, The amazing osteocyte, J. Bone. Miner. Res, 2011.

A. Grey, Q. Chen, K. Callon, X. Xu, I. R. Reid et al., The phospholipids sphingosine-1-phosphate and lysophosphatidic acid prevent apoptosis in osteoblastic cells via a signaling pathway involving G(i) proteins and phosphatidylinositol-3 kinase, Endocrinol, 2002.

S. Yao, Y. Zhang, X. Wang, F. Zhao, M. Sun et al., Pigment Epithelium-Derived Factor (PEDF) Protects Osteoblastic Cell Line from Glucocorticoid-Induced Apoptosis via PEDF-R, Int. J. Mol. Sci, 2016.

,

X. Li, M. S. Ominsky, Q. T. Niu, N. Sun, B. Daugherty et al.,

P. J. Sarosi, D. L. Kostenuik, W. S. Lacey, H. Z. Simonet, C. Ke et al., Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength, J. Bone. Miner. Res, 2008.

P. Chavassieux, R. Chapurlat, N. Portero-muzy, J. P. Roux, P. Garcia et al.,

R. W. Libanati, A. Boyce, A. Wang, and . Grauer, Bone-Forming and Antiresorptive Effects of Romosozumab in Postmenopausal Women With Osteoporosis: Bone Histomorphometry and Microcomputed Tomography Analysis After 2 and 12 Months of Treatment, J. Bone. Miner. Res, 2019.

C. Sanchez-de-diego, N. Artigas, C. Pimenta-lopes, J. A. Valer, B. Torrejon et al.,

J. A. Perez, P. M. Villena, J. L. Garcia-roves, F. Rosa, and . Ventura, Glucose Restriction Promotes Osteocyte Specification by Activating a PGC-1alpha-Dependent Transcriptional Program, iScience, 2019.

K. M. Waters, J. M. Jacobs, M. A. Gritsenko, and N. J. Karin, Regulation of gene expression and subcellular protein distribution in MLO-Y4 osteocytic cells by lysophosphatidic acid: Relevance to dendrite outgrowth, Bone, 2011.