N. Zhu, A novel coronavirus from patients with pneumonia in China, N. Engl. J. Med, vol.382, pp.727-733, 2019.

C. Bavishi, T. M. Maddox, and F. H. Messerli, Coronavirus disease 2019 (COVID-19) infection and renin angiotensin system blockers, JAMA Cardiol, 2020.

X. Yang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir Med, pp.30079-30084, 2020.

F. Zhou, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, vol.395, pp.1054-1062, 2020.

C. Wu, Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease, JAMA Int. Med, 2019.

M. A. Crackower, Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature, vol.417, pp.822-828, 2002.

Y. Imai, Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature, vol.436, pp.112-116, 2005.

V. E. Torres, Angiotensin blockade in late autosomal dominant polycystic kidney disease, N. Engl. J. Med, vol.371, pp.2267-2276, 2014.

R. Santos, A. J. Ferreira, T. Verano-braga, and M. Bader, Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system, J. Endocrinol, vol.216, pp.1-17, 2013.

X. Xu, Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci, vol.63, pp.457-460, 2020.

R. Yan, Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, vol.367, pp.1444-1448, 2020.

M. Hoffmann, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, vol.181, pp.271-280, 2020.

K. Kuba, A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med, vol.11, pp.875-879, 2005.

Y. Liu, Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury, Sci. China Life Sci, vol.63, pp.364-374, 2020.

Y. Cheng, Kidney disease is associated with in-hospital death of patients with COVID-19, Kidney International, vol.97, pp.829-838, 2020.

X. H. Yao,

. Zhonghua-bing-li-xue-za-zhi-chin, J Pathol, vol.49, 2020.

Z. Xu, Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med, vol.8, pp.420-422, 2020.

R. A. Frieler and R. M. Mortensen, Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling, Circulation, vol.131, pp.1019-1030, 2015.

F. Ma, The requirement of CD8+ T cells to initiate and augment acute cardiac inflammatory response to high blood pressure, J. Immunol, vol.192, pp.3365-3373, 2014.

X. Sun, T-cell mineralocorticoid receptor controls blood pressure by regulating interferon-gamma, Circ. Res, vol.120, pp.1584-1597, 2017.

N. R. Barbaro, A. Kirabo, and D. G. Harrison, A new role of mister (MR) T in hypertension: mineralocorticoid receptor, immune system, and hypertension, Circ. Res, vol.120, pp.1527-1529, 2017.

A. Kirabo, DC isoketal-modified proteins activate T cells and promote hypertension, J. Clin. Investig, vol.124, pp.4642-4656, 2014.

C. Huang, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, vol.395, pp.497-506, 2020.

W. G. Glass, CCR5 deficiency increases risk of symptomatic West Nile virus infection, J. Exp. Med, vol.203, pp.35-40, 2006.

L. Vangelista and S. Vento, The expanding therapeutic perspective of CCR5 blockade, Front. Immunol, vol.8, p.1981, 2017.