A. P. Georgopoulos, A. B. Schwartz, and R. E. Kettner, Neuronal population coding of movement direction, Science, vol.233, issue.4771, pp.1416-1425, 1986.

E. P. Simoncelli and B. A. Olshausen, Natural image statistics and neural representation, vol.24, pp.1193-216, 2001.

B. B. Averbeck, P. E. Latham, and A. Pouget, Neural correlations, population coding and computation, Nature Reviews Neuroscience, vol.7, issue.5, pp.358-66, 2006.

A. Wohrer, M. D. Humphries, and C. K. Machens, Population-wide distributions of neural activity during perceptual decision-making, Progress in neurobiology, vol.103, pp.156-93, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01904763

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biological cybernetics, vol.27, issue.2, pp.77-87, 1977.

R. Ben-yishai, R. L. Bar-or, and H. Sompolinsky, Theory of orientation tuning in visual cortex, Proceedings of the National Academy of Sciences, vol.92, issue.9, pp.3844-3852, 1995.

C. Eliasmith, A unified approach to building and controlling spiking attractor networks. Neural computation, vol.17, pp.1276-314, 2005.

Y. Burak and I. R. Fiete, Fundamental limits on persistent activity in networks of noisy neurons, Proceedings of the National Academy of Sciences, vol.109, issue.43, pp.17645-50, 2012.

G. Hennequin, E. J. Agnes, and T. P. Vogels, Inhibitory plasticity: Balance, control, and codependence, Annual Review of Neuroscience, vol.40, pp.557-79, 2017.

A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural computation, vol.7, issue.6, pp.1129-59, 1995.

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, issue.6583, pp.607-616, 1996.

J. Zylberberg, J. T. Murphy, and M. R. Deweese, A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of v1 simple cell receptive fields, PLoS Comput Biol, vol.7, issue.10, p.1002250, 2011.

C. Savin, P. Joshi, and J. Triesch, Independent component analysis in spiking neurons, PLoS Comput Biol, vol.6, issue.4, 2010.

R. Bourdoukan, D. Barrett, C. K. Machens, and S. Deneve, Learning optimal spike-based representations, Advances in neural information processing systems, pp.2285-93, 2012.

K. S. Burbank, Mirrored stdp implements autoencoder learning in a network of spiking neurons, PLoS computational biology, vol.11, issue.12, p.1004566, 2015.

P. Vertechi, W. Brendel, and C. K. Machens, Unsupervised learning of an efficient short-term memory network, Advances in neural information processing systems, pp.3653-61, 2014.

C. Pehlevan, T. Hu, and D. B. Chklovskii, A hebbian/anti-hebbian neural network for linear subspace learning: A derivation from multidimensional scaling of streaming data, Neural computation, vol.27, issue.7, pp.1461-95, 2015.

C. Pehlevan, A. M. Sengupta, and D. B. Chklovskii, Why do similarity matching objectives lead to hebbian/antihebbian networks?, Neural computation, vol.30, issue.1, pp.84-124, 2018.

J. C. Whittington and R. Bogacz, An approximation of the error backpropagation algorithm in a predictive coding network with local hebbian synaptic plasticity, Neural computation, vol.29, issue.5, pp.1229-62, 2017.

J. Guerguiev, T. P. Lillicrap, and B. A. Richards, Towards deep learning with segregated dendrites, ELife, vol.6, 2017.

J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn, Dendritic cortical microcircuits approximate the backpropagation algorithm, Advances in neural information processing systems, pp.8721-8753, 2018.

M. Akrout, C. Wilson, P. Humphreys, T. Lillicrap, and D. B. Tweed, Deep learning without weight transport, Advances in neural information processing systems, pp.974-82, 2019.

B. J. Lansdell, P. Prakash, and K. P. Kording, Learning to solve the credit assignment problem, International conference on learning representations, 2020.

A. Renart, N. Brunel, and X. Wang, Mean-field theory of irregularly spiking neuronal populations and working memory in recurrent cortical networks. Computational neuroscience: A comprehensive approach, pp.431-90, 2004.

C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. Dewolf et al., A large-scale model of the functioning brain, science, vol.338, issue.6111, pp.1202-1207, 2012.

S. Denève and C. K. Machens, Efficient codes and balanced networks, Nature neuroscience, vol.19, issue.3, pp.375-82, 2016.

M. Boerlin, C. K. Machens, and S. Denève, Predictive coding of dynamical variables in balanced spiking networks, Plos Computiational Biology, vol.9, issue.11, p.1003258, 2013.

D. T. Barrett, S. Denève, and C. K. Machens, Optimal compensation for neuron loss, eLife, vol.5, p.12454, 2016.

M. Chalk, B. Gutkin, and S. Deneve, Neural oscillations as a signature of efficient coding in the presence of synaptic delays, Elife, vol.5, 2016.

. Vreeswijk-c-van and H. Sompolinsky, Chaos in neuronal networks with balanced excitatory and inhibitory activity, Science, vol.274, issue.5293, pp.1724-1730, 1996.

D. J. Amit and N. Brunel, Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex, Cerebral cortex, vol.7, issue.3, pp.237-52, 1997.

M. N. Shadlen and W. T. Newsome, The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding, The Journal of neuroscience, vol.18, issue.10, pp.3870-96, 1998.

A. Renart, J. De-la-rocha, P. Bartho, L. Hollender, N. Parga et al., The asynchronous state in cortical circuits, Science, vol.327, issue.5965, pp.587-90, 2010.

S. Song, K. D. Miller, and L. F. Abbott, Competitive hebbian learning through spike-timing-dependent synaptic plasticity, Nature neuroscience, vol.3, issue.9, pp.919-945, 2000.

T. Vogels, H. Sprekeler, F. Zenke, C. Clopath, and W. Gerstner, Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks, Science, vol.334, issue.6062, pp.1569-73, 2011.

C. Clopath, L. Bü-sing, E. Vasilaki, and W. Gerstner, Connectivity reflects coding: A model of voltage-based stdp with homeostasis, Nature neuroscience, vol.13, issue.3, pp.344-52, 2010.

D. Ganguli and E. Simoncelli, Efficient sensory encoding and bayesian inference with heterogeneous neural populations, Neural Computation, vol.26, issue.10, pp.2103-2137, 2014.

N. Mesgarani, S. David, J. Fritz, and S. Shamma, Mechanisms of noise robust representation of speech in primary auditory cortex, Proc Natl Acad Sci, vol.111, issue.18, pp.6792-6799, 2014.

P. Yin, J. Fritz, and S. Shamma, Rapid spectrotemporal plasticity in primary auditory cortex during behavior, J Neurosci, vol.34, issue.12, pp.4396-408, 2014.

H. Murakoshi, M. E. Shin, P. Parra-bueno, E. M. Szatmari, A. C. Shibata et al., Kinetics of endogenous camkii required for synaptic plasticity revealed by optogenetic kinase inhibitor, Neuron, vol.94, issue.1, pp.37-47, 2017.

M. S. Lewicki and T. J. Sejnowski, Learning overcomplete representations, Neural computation, vol.12, issue.2, pp.337-65, 2000.

A. Hyvä-rinen, J. Karhunen, and E. Oja, Independent component analysis, vol.46, 2004.

E. Oja, Simplified neuron model as a principal component analyzer, Journal of mathematical biology, vol.15, issue.3, pp.267-73, 1982.

R. Linsker, Self-organization in a perceptual network, Computer, vol.21, issue.3, pp.105-122, 1988.

S. Amari, A. Cichocki, and H. H. Yang, A new learning algorithm for blind signal separation, Advances in neural information processing systems, pp.757-63, 1996.

R. Linsker, A local learning rule that enables information maximization for arbitrary input distributions, Neural Computation, vol.9, issue.8, pp.1661-1666, 1997.

C. Pehlevan and D. Chklovskii, A normative theory of adaptive dimensionality reduction in neural networks, Advances in neural information processing systems, pp.2269-77, 2015.

T. Isomura and T. Toyoizumi, A local learning rule for independent component analysis, Scientific reports, vol.6, p.28073, 2016.

P. D. King, J. Zylberberg, and M. R. Deweese, Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of v1, The Journal of Neuroscience, vol.33, issue.13, pp.5475-85, 2013.

D. Thalmeier, M. Uhlmann, H. J. Kappen, and R. Memmesheimer, Learning universal computations with spikes, PLoS computational biology, vol.12, issue.6, p.1004895, 2016.

A. Gilra and W. Gerstner, Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network, Elife, vol.6, p.28295, 2017.

A. Alemi, C. K. Machens, S. Deneve, and J. Slotine, Learning nonlinear dynamics in efficient, balanced spiking networks using local plasticity rules, Thirty-second aaai conference on artificial intelligence, pp.588-95, 2018.

R. Urbanczik and W. Senn, Learning by the dendritic prediction of somatic spiking, Neuron, vol.81, issue.3, pp.521-529, 2014.

S. Denève, A. Alemi, and R. Bourdoukan, The brain as an efficient and robust adaptive learner, Neuron, vol.94, issue.5, pp.969-77, 2017.

D. J. Tolhurst, J. A. Movshon, and A. Dean, The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision research, vol.23, pp.90200-90206, 1983.

J. Fiser, P. Berkes, G. Orbá-n, and M. Lengyel, Statistically optimal perception and learning: From behavior to neural representations, Trends in cognitive sciences, vol.14, issue.3, pp.119-149, 2010.

L. Buesing, J. Bill, B. Nessler, and W. Maass, Neural dynamics as sampling: A model for stochastic computation in recurrent networks of spiking neurons, PLoS Comput Biol, vol.7, issue.11, p.1002211, 2011.

J. F. Poulet and C. C. Petersen, Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice, Nature, vol.454, issue.7206, pp.881-886, 2008.

J. Yu and D. Ferster, Membrane potential synchrony in primary visual cortex during sensory stimulation, Neuron, vol.68, issue.6, pp.1187-201, 2010.

J. S. Isaacson and M. Scanziani, How inhibition shapes cortical activity, Neuron, vol.72, issue.2, pp.231-274, 2011.

M. Xue, B. V. Atallah, and M. Scanziani, Equalizing excitation-inhibition ratios across visual cortical neurons, Nature, vol.511, issue.7511, pp.596-600, 2014.

N. Caporale and Y. Dan, Spike timing-dependent plasticity: A hebbian learning rule, Annu Rev Neurosci, vol.31, pp.25-46, 2008.

D. E. Feldman, The spike-timing dependence of plasticity, Neuron, vol.75, issue.4, pp.556-71, 2012.