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Abstract 

Neuroimaging and especially MRI has emerged as a necessary imaging modality to detect, measure, 

characterize and monitor brain tumours. Advanced MRI sequences such as perfusion MRI, diffusion 

MRI and spectroscopy as well as new post-processing techniques such as automatic segmentation of 

tumours and radiomics play a crucial role in characterization and follow up of brain tumours. The 

purpose of this review is to provide an overview on anatomical and functional MRI use for brain 

tumours boundaries determination and tumour characterization in the specific context of radiotherapy. 

The usefulness of anatomical and functional MRI on particular challenges posed by radiotherapy such 

as pseudo progression and pseudo esponse and new treatment strategies such as dose painting is also 

described. 

Keywords 

Brain tumours, Neuroimaging, Perfusion MRI, Proton magnetic resonance spectroscopy, tumour 

segmentation, radiomics, dose painting 

Résumé 

Les avancées en neuro-imagerie, principalement liées au développement de l’IRM, ont rendu cette 

modalité centrale dans la prise en charge des patients porteurs de tumeur cérébrale. L’IRM, par son 

approche anatomique, permet de détecter, localiser et caractériser les lésions. L’application de 

séquences avancées d’IRM de type imagerie de perfusion, de spectroscopie ou de diffusion, ainsi que 

les nouveaux post-traitements permettant une segmentation ou une caractérisation automatique des 

lésions, apportent de nouvelles possibilités pour affiner la caractérisation des tumeurs tant au moment 

du diagnostic initial que lors du traitement par radiothérapie et du suivi. Le but de cette revue de 

littérature est de donner un aperçu de l’utilisation des imageries IRM anatomique et fonctionnelle 

utilisées pour la détermination des contours des différentes tumeurs cérébrales dans le contexte 

particulier de la radiothérapie. L'utilité de l'IRM anatomique et fonctionnelle est également examinée, 

en portant une attention particulière aux défis posés par la radiothérapie, tels que la pseudoprogression 

et la pseudoréponse, ainsi que par de nouvelles stratégies de traitement personnalisées, comme la dose 

painting. 

Mots-clés 
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Tumeurs cérébrales, neuroimagerie, IRM de perfusion, spectroscopie magnétique, segmentation 

tumorale, radiomique, dose painting 

 

1. Introduction 

Brain tumour detection and characterization rely on standard imaging with computed tomography 

(CT) and magnetic resonance (MR) routinely used for this purpose. Thanks to its superior soft tissue 

contrast to delineate tumours, MR has emerged as a necessary imaging modality. Beyond its 

anatomical advantage, advanced multimodal MRI techniques, as well as PET MRI and new post 

processing techniques, including artificial intelligence applied to image analysis, open new 

possibilities of characterizing tumours. Hence, neuroimaging has evolved into a comprehensive 

diagnostic tool at each step of the patient care: detection and characterization of morphological 

properties of the tumour, evaluation of malignant transformation of low-grade gliomas, choice of 

treatment strategies, monitoring of treatment response and prognosis definition. The purpose of this 

review is to provide an overview of morphologic and functional MRI used to assess brain tumours 

boundaries and the different challenges for radiotherapy purposes. 

2. Detection and delineation of intraparenchymal brain tumours 

2.1. MR acquisition protocol 

The conventional structural radiotherapy MR protocol is constructed based on several requirements: 

detection, characterization and anatomical delineation. Each of these requirements are completed by 

one or more specific MR acquisition sequences that we will be described. Attempts for standardization 

of these sequences and their parameters for clinical trials have been made in 2015 by US neuro-

oncology experts, in order to unify protocols for multicentre studies [1]. Each sequence of the MR 

acquisition protocol must be thoroughly optimized in order to improve the contrast-to-noise ratio and 

to reduce scan time, with a total acquisition time of 30 minutes or less to be compatible with clinical 

routine. The proposed protocol contains: T1- and T2-weighted sequences, T2-weighted sequence with 

fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T1-weighted 

sequence after contrast enhancement (Fig. 1). 

2.1.1. T1-weighted sequences and T1-weighted sequences after contrast enhancement  

T1-weighted sequence and T1-weighted sequence after contrast enhancement reflect the enhancing 

part of a tumour, which is present in a vast majority of primary and secondary brain tumours given the 

nonspecific breakdown of the blood–brain barrier. This disruption is responsible for a leakage of 

gadolinium into the extracellular spaces of the tumour. The gadolinium element, used as MR contrast 

agent, is strongly paramagnetic at low concentrations, and is responsible for a T1 shortening effect 
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which increases the T1 signal within the tumour, providing strong contrast compared to normal 

tissues. This strong contrast allows the detection of small (less than 5mm) lesions, especially brain 

metastases [2,3] . Several parameters can improve the detection rate of small lesions. 

2.1.1.1. Contrast agent dose 
The detection rate increases with the dose of contrast agent [4]. However, increasing the dose is not 

recommended in clinical practice even with modern contrast agents due to unknown effects of in-vivo 

gadolinium long-term deposition in patients with repeated contrast injection [5,6] . 

2.1.1.2. Magnetic field 
Using a high field intensity MR increases the contrast-to-noise ratio and allows to reduce the contrast 

agent dose at 3 T as compared to 1.5 T [7]. Recent studies assessing very high field scanners have 

confirmed this effect at 7 T [8]. 

2.1.1.3. Time delay between injection and acquisition 
As blood–brain barrier disruption is time-dependent, the degree of enhancement has been shown to 

increase with time, and it is recommended to acquire the T1-weighted sequence after contrast 

enhancement sequence 10 to 15 minutes after contrast agent injection [9]. 

2.1.1.4. Sequence type 
Two main sequence types can be used for performing T1-weighted imaging: gradient echo imaging 

(T1w-GRE), which has been used for 25 years for its speed and three-dimensional (3D) capabilities 

[10]. More recently, studies have found a higher rate of metastasis detection with thin-slice spin echo 

imaging (T1w-SE) [11]. The consensus is currently unclear on which sequence type should be used in 

clinical routine, but a shift towards T1-weighted spin echo is highly likely in years to come. 

2.1.1.5. Use of subtraction techniques 
Acquiring T1-weighted sequences with and without injection of contrast agent allows to compute a 

subtraction map, which has a great value for evaluating haemorrhagic lesions that can have a 

spontaneous high T1 signal and to improve contrast and lesion delineation (Fig. 2) [12,13]. 

Regarding characterization, the T1-weighted sequence after contrast enhancement gives several 

morphological elements for orienting tumour type [14]. These include localization of the tumour 

(intra- vs. extra-axial) and its core characteristics (necrotic, cystic or solid).  

When evaluating tumour after radiation therapy, T1-weighted sequence after contrast enhancement 

yields some morphologic factors that can help to distinguish radiation necrosis from recurrence. 

Typically, corpus callosum involvement, apparition of multiple enhancement foci and subependymal 

spread are suggestive of tumoral recurrence but these features are often insufficient alone to be 

conclusive [15]. 
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At last, T1-weighted sequence and especially T1-weighted gradient echo sequence, with its high 

resolution and high gray–white matter contrast, helps the anatomical localization of radiosensitive 

brain structures such as optic nerve, cochlea, hippocampus, brainstem, pituitary gland, circle of Willis 

[16]. 

2.1.2. FLAIR sequence 

The FLAIR sequence is a T2-weighted sequence with an additional inversion recovery pulse that 

allows a suppression of the cerebrospinal fluid signal and is therefore sensitive to infiltrative oedema.  

In untreated brain metastasis, a high intensity area surrounding an enhanced tumour is linked to 

vasogenic oedema. This reactional oedema does not contain tumoral cells and as such is not 

considered as a target for radiotherapy. In diffuse gliomas, the non-enhancing high intensity areas in 

FLAIR have a different origin. They correspond to a mixture of vasogenic oedema and tumour 

infiltration (Fig. 3). Low-grade gliomas are mostly described as diffuse infiltrating tumours with high 

FLAIR signal and no contrast enhancement on T1-weighted sequence. In high-grade gliomas, 

infiltrative high intensity FLAIR regions are observed in periphery of an enhanced nodule [17]. In 

both cases, infiltration displays different characteristics as compared to vasogenic oedema including 

cortex and basal ganglia involvement, corpus callosum extension, or focal mass effect. In radiation 

therapy, there is still no full consensus regarding whether the FLAIR hyperintensities should be 

included in gross tumour volumes [18,19]. Recent studies have proposed morphological and functional 

methods to differentiate glial infiltration from oedema within the high intensity zone but are not yet 

used in clinical practice [20,21]. 

After antiangiogenic therapy of a glioblastoma, a regression of the enhanced portion can falsely be 

interpreted as a response to treatment but may be due to a normalization of the blood–brain barrier 

rupture without real tumour decrease. In this particular setup, a fine analysis of the FLAIR sequence is 

essential for tumour response evaluation [22]. 

2.1.3. T2-weighted sequence 

T2-weighted sequence given information is close to FLAIR sequence and does not bring much 

additional information on a given tumour. As liquid tissues yield high T2 signal, T2 sequence can 

possibly help the characterization of cystic or necrotic portions in a tumour. Moreover, T2 may have a 

value for automatic segmentation because of its high anatomical contrast (see paragraph 2.3). 

2.1.4. Diffusion-weighted imaging sequence 

The diffusion-weighted imaging sequence is at the junction of morphological and functional imaging. 

In the context of brain tumour exploration, a diffusion coefficient restriction is evidence for high 

cellularity [23]. Diffusion has shown its relevance for grading non-enhancing glioma and for the 
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diagnosis of lymphoma [24,25]. Moreover, it is essential in early postoperative context, where it 

allows to diagnose ischemic injury whose imaging evolution can be confused with tumour recurrence 

and help the detection of potential infectious complications such as abscesses [26]. 

2.1.5. Other morphological sequences 

T2* or T2 gradient echo and susceptibility-weighted imaging are widely used at the diagnosis stage in 

order to evaluate brain tumour haemorrhage content. Among primitive cerebral tumours, glioblastoma, 

astrocytoma and oligodendroglioma are prone to be haemorrhagic [27]. For secondary tumours, 

haemorrhage is classically observed in melanoma, choriocarcinoma, renal cell carcinoma, thyroid 

cancer, but also in lung and breast cancer due to their high prevalence [28]. 

2.2. Bidimensional versus three-dimensional volumes 

In the early days of MRI, spin echo bidimensional (2D) sequences were the most popular sequences 

because of their acquisition time (compatible with clinical practice) and their robustness to magnetic 

field inhomogeneity [29]. In the early 1990s, 3D T1-weighted and T2-weighted sequence acquisitions 

became available due to the technological progresses [30]. In addition, the rapid development of 

computer post-treatment allowed to reformat dynamically 3D sequences in axial, sagittal, coronal and 

oblique planes. These elements are now essential for lesion characterization and treatment planning, 

and nowadays all T1-weighted sequence after contrast enhancement are acquired in 3D. 

Three-dimensional FLAIR sequences are now also considered clinical routine. They are especially 

relevant for the study of glioma where the tumoral infiltration is not homogeneous in space. Even if 

2D FLAIR is currently the basis for initial diagnosis recommendations, this may change in the years to 

come [31]. 

Three-dimensional sequences are of special interest when planning conformal radiation therapy, as 

registration of 3D sequences onto CT is easier than with 2D images, and the quality of this registration 

can affect the target delineation and the resulting treatment plan [32]. 

2.3. RANO measurement criteria  

Identifying more effective brain tumour therapies was several years ago partially limited by the lack of 

reliable criteria to determine tumour response and progression. In neuro-oncology, this evaluation was 

especially difficult since contrast enhancement operates as an incomplete surrogate for tumour 

assessment and is affected by agents that influence vascular permeability, such as antiangiogenic 

therapy. Moreover, most tumours have a non-enhancing component which may be difficult to 

quantify.  

Although the RECIST criteria are widely used to assess the response to systemic cancer therapies, 

their use in neuro-oncology have been limited by the fact that 1D measurements may not accurately 
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reflect irregular and asymmetric shapes. The Response Assessment in Neuro-Oncology (RANO) 

working group was established to improve the characterization of tumour evolution, assessment of 

tumour response and selection of end points, specifically in the context of clinical trials [33–35]. The 

RANO working group was originally created to update response criteria for high- and low-grade 

gliomas and to address issues such as pseudo response and non-enhancing tumour progression during 

antiangiogenic therapies, and pseudo progression during chemo-radiotherapies. It was then extended 

to other brain tumours including brain metastases, leptomeningeal metastases, spine tumours, 

paediatric brain tumours, and meningiomas. 

2.3.1. Glioblastomas  

In reaction to the need for better standardization of image acquisition for glioblastoma, a recent 

consensus paper was published detailing an “international brain tumour imaging protocol (BTIP)” 

with recommended sequences and parameters [36,37]. Parameter matched, pre- and post-contrast 3D 

inversion recovery gradient recalled echo (IR-GRE) images with less than 1.5 mm isotropic resolution, 

are at the heart of this suggested method, allowing for bidimensional and volumetric measurements of 

the enhancing part of the tumour. Based on the RANO criteria, tumour response should be determined 

in comparison to the tumour measurements obtained at pretreatment baseline, and tumour progression 

should be concluded based on the comparison of post-treatment images to the smallest tumour 

measurement at either pretreatment baseline or after initiation of therapy.  

Quantification of contrast enhancing tumour size or volume should be performed on contrast-enhanced 

T1-weighted digital subtraction maps in order to improve the lesion visualization. 

Two-dimensional, perpendicular measurements of contrast enhancing tumour size, excluding the 

resection cavity along with any cysts or areas of central macroscopic necrosis, should be used for 

response assessment if volumetric tools are not available (Fig. 4). 

Measurable disease should be defined as contrast enhancing lesions with a minimum size of both 

perpendicular measurements greater than or equal to 10 mm. Up to five target measurable lesions 

should be described and ordered from the largest to the smallest. Non-measurable disease should be 

defined as lesions that are too small (less than 1 cm in both perpendicular dimensions), non-enhancing, 

or lesions that contain a poorly defined margin that cannot be measured or segmented with confidence. 

To avoid interpretation of postoperative changes as residual enhancing disease, a baseline MRI scan 

should ideally be obtained within 24 to 48 hours after surgery and no later than 72 hours [38]. 

Because novel treatments are likely to result in a higher than normal incidence of treatment-related 

increase in contrast enhancement (“pseudo progression”) or decrease in contrast enhancement 

(“pseudo response”), patients should continue therapy with close observation (e.g. 4 to 8 week 
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intervals) if there is a suspicion of pseudo progression or pseudo response (see paragraph 3.2.4). If 

subsequent imaging studies and/or clinical observations demonstrate that progression has actually 

occurred, the date of confirmed progression should be noted as the scan at which the potential 

progression was first identified. This is especially true for immunotherapy response, for which specific 

iRANO modified criteria have been developed to address the challenges of emerging novel 

immunotherapy for high-grade gliomas [39]. Indeed, a form of pseudoprogression is encountered in 

immunotherapy that is distinct from that seen in routine chemoradiotherapy (Stupp protocol) both in 

mechanism and imaging appearances.  

2.3.2. Lower grade gliomas 

The RANO criteria for low-grade gliomas cannot rely on enhancing lesions, as most of the time these 

are unenhanced lesions. The classification is therefore based on percentage of T2/FLAIR signal 

modification [40]. In addition, since modifications are usually evolving mildly, the RANO low-grade 

glioma criteria introduce minor response category (greater than 25% but less than 50% decrease in 

area). As with RANO- high-grade gliomas, corticosteroid use and clinical status are considered in the 

determination of response and progression. 

One of the challenges in determining response and progression in low-grade gliomas is the difficulty 

in accurately measuring the tumour using only 2D tools. It is important to refer to baseline scanner 

each comparison and ongoing work should determine if measuring T2/FLAIR volume is more 

accurate than 2D measurements to distinguish changes in tumour size. Volume growth trajectory could 

also be a more adapted measure of response. [41] 

2.3.3. Brain metastasis 

The RANO-brain metastasis (RANO-BM) working group developed normative criteria for 

determining response criteria in brain metastasis studies based upon factors derived from RANO- 

high-grade gliomas and RECIST [42,43]. In these criteria, 1D measurement is used to assess the larger 

diameter. As with RECIST, the sum of the diameters for all target lesions are to be calculated and the 

sum of longest diameters has to be reported at baseline. All other central nervous system lesions such 

as leptomeningitis, small lesions less than 1cm, or cystic only lesions should be identified as non-

target lesions and should also be recorded at baseline.  

Progression occurs when the sum of the linear measurements exceeds 20% compared with baseline or 

best response. In addition to the relative increase of 20%, at least one lesion must increase by an 

absolute value of 5 mm or more to be considered progression. 
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For non-target lesions, unequivocal progression of existing enhancing non-target central nervous 

system lesions, new lesion(s) (except while on immunotherapy-based treatment), or unequivocal 

progression of existing tumour-related non-enhancing (T2/FLAIR) central nervous system lesions 

define progression.  

Partial response is defined as reduction of the sum of linear measurements by 30% compared with 

baseline, sustained for at least 4 weeks without any new lesion, under stable to decreased clinical 

symptoms and corticosteroid dose. 

3. Advanced magnetic resonance imaging of intraparenchymal brain tumours  

Analysing morphological MRI often allows the clinician to give an accurate picture of the nature or 

the evolution of a tumour, but in a certain proportion of cases, advanced methods allow to increase 

confidence in differential diagnosis, pretherapeutic planning, tumour grading and follow-up findings 

[44]. The European Society of Neuroradiology (ESNR) Annual Meeting 2015 workshop 

recommended an imaging protocol for glioma diagnosis and emphasized on the role of advanced MRI 

modalities in routine [45]. 

After a quick review of the technical aspects of each advanced sequence available in clinical practice, 

examples of clinical applications will be described. 

3.1. Advanced sequences 

3.1.1. Diffusion weighted imaging and diffusion tensor imaging 

Diffusion-weighted imaging is correlated to the Brownian motion of water molecules in tissue in the 

three dimensions. The apparent diffusion coefficient (ADC), which reflects the water molecules 

diffusion, decreases as the cellularity in a tissue increases [23]. This decrease is especially noted for 

several high cellularity tumour types such as lymphoma [25]. Diffusion tensor imaging is based on the 

same principle as diffusion-weighted imaging, but with a higher number of explored dimensions, is 

able to evaluate the preferential direction of white matter fibres within a voxel. This is often 

summarized with a scalar number, fractional anisotropy (FA), which characterizes the directionality of 

fibre within each voxel. Diffusion tensor imaging also allows the visualization of main white matter 

fascicles and can be integrated into radiotherapy planning in order to reduce white matter damage [46] 

. 

3.1.2. Perfusion MRI  

Two types of perfusion imaging have been proposed in the literature: 
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 dynamic susceptibility imaging, which has a high temporal resolution, and allows to explore the 

neoangiogenesis of a tumour. The arterialization of a tumour if often characterized by the 

relative cerebral blood volume, which is increased in case of neoangiogenesis [47]; 

 dynamic contrast enhancement imaging, which has lower temporal resolution but better spatial 

resolution, allows to evaluate the capillary permeability of a lesion synthesized into the Ktrans 

scalar value [48]. 

3.1.3. MR spectroscopy 

MR spectroscopy aims at performing in vivo chemical spectroscopy, in order to evaluate the relative 

quantity of different metabolites in brain parenchyma [49]. Most frequent metabolites are creatine, 

myoinositol mainly concentrated within glial cells, choline, which is related to cell membrane 

turnover, N-acetyl-aspartate, which is mainly concentrated within the neurons, lactates, which are 

related to hypoxia and lipids, which are related to necrosis. Some metabolites may even be suggestive 

for certain tumoral types, such as alanine for meningioma or taurine for medulloblastoma [50,51]. 

Classic spectroscopy is made in a single voxel but some multi-voxel techniques allow to acquire 

spectra over a 2D or 3D volume, allowing a sampling of the different parts of a tumour [49]. 

3.2. Application of advanced sequences in clinical situations 

3.2.1. Differential diagnosis 

Pseudo tumours such as pseudo tumoral multiple sclerosis can be misleading when unique and 

enhancing. Several morphological criteria can help to evoke this diagnosis as a white matter 

involvement, a ring pattern or an open ring enhancement [52]. Advanced techniques increase the 

diagnostic confidence by adding quantitative features such as a peripheral ADC restriction and a 

choline/N-acetyl-aspartate ratio ≤ 1 on MR spectroscopy (Figure S1) [53,54]. However, these findings 

are inconstant and must be interpreted with caution and only in conjunction with morphologic 

imaging.  

3.2.2. Tumour type characterization 

Advanced sequences may help the diagnosis of certain tumour types. For example, primary cerebral 

nervous system lymphomas have a classical presentation on both diffusion-weighted imaging  and 

dynamic susceptibility contrast perfusion that may help the differential diagnosis with glioma [55,56]. 

For these tumours, a high diffusion signal with an ADC restriction is observed. In perfusion sequence, 

primary cerebral nervous system lymphoma is not associated with elevated relative cerebral blood 

volume  but can show a classical blood–brain barrier rupture characteristic with a signal intensity 

curve returning above the baseline (Figure S2) [57]. At last, on MR spectroscopy, primary cerebral 

nervous system lymphoma can demonstrate high choline/creatine ratios and elevated lipids. 
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Differentiation of glioblastoma and metastasis is frequently an issue when the morphology is not 

specific, especially when the enhanced lesion is unique, and the peritumoral FLAIR hyperintensities 

do not obviously infiltrate the gray matter or the corpus callosum. In such situations, multimodal 

imaging may be of help to differentiate them. However, as metastases can be arterialized and do not 

contain normal brain parenchyma, the core of a metastasis is virtually not distinguishable from the 

enhancing portion of a glioblastoma, as both can have hyperperfusion and tumoral spectrum on MR 

spectroscopy [58]. The solution is to evaluate these parameters in the surrounding FLAIR 

hyperintensities: in metastasis, this hyperintensity is pure oedema and does not contain tumoral cells, 

whereas in glioblastoma the hyperintensity can be itself tumoral. As a result, in the peritumoral 

oedema of a metastasis the relative cerebral blood volume  will be decreased (<1), the ADC will be 

increased and the MR spectroscopy spectrum will be normal with a low choline/N-acetyl-aspartate 

ratio [58]. In contrast, in the non-enhancing portion of a glioblastoma, the relative cerebral blood 

volume  may be increased (greater than 1), ADC may be lower and the choline/N-acetyl-aspartate ratio 

may be elevated (greater than 1.11). [58,59] 

3.2.3. Tumour grading 

Glioma grading is important for the patient care and decision-making process. Multimodal MRI can 

help to improve the performances of glioma grading and grade change during follow-up. Indeed, even 

if tumour enhancement is a marker of malignancy in glioblastoma, it is neither fully specific nor 

sensitive [60]. It has been shown that up to one third of non-enhancing glioma can be high grade 

gliomas [61]. In the absence of enhancement, hyperperfusion on perfusion-weighted imaging  is a 

good marker for high grade glioma, with cutoff values at 1.75 for relative cerebral blood volume  

between grade II and III gliomas [62]. Moreover, an increase of relative cerebral blood volume in a 

low-grade glioma is predictive for a transformation to a higher grade glioma [63]. 

MR spectroscopy has also an interest in glioma grading, as transformation is characterized by 

increased choline/N-acetyl-aspartate ratio and appearance of lipid and lactates [64]. At last, 

susceptibility-weighted imaging, by showing the neoangiogenesis and microhaemorrhages appearing 

as intratumoral susceptibility signals (ITSS), has also a certain significance for tumour grading [65]. 

3.2.4. Tumour follow-up after treatment 

3.2.4.1. Pseudo progression and radionecrosis 
After radiation therapy of a tumour (metastasis or gliomas), early or tardive changes of the brain 

parenchyma can occur and be mistaken for tumour progression. 

Pseudo progression occurs within 3 months after completing treatment and its occurrence is 

potentialized by O6-methylguanine-DNA methyltransferase status of tumour and temozolomide 

treatment [66]. Morphologically, it presents as fluffy enhancement around the initial tumour [67]. 
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Diagnosis is usually made at follow-up, but elements such as an elevated ADC and a low relative 

cerebral blood volume on multimodal imaging can comfort this hypothesis [67]. 

Radiation necrosis is usually delayed 3 to 12 months after radiotherapy (up to several years after) and 

has a morphological aspect than can mimic a necrotic relapse of a metastasis or glioblastoma, 

sometimes with a classical “soap bubble” appearance [66]. In the case of radiation necrosis, ADC is 

elevated and relative cerebral blood volume is decreased with a cut-off between 1 and 2 varying with 

the studies [68]. MR spectroscopy is here limited as both treatment necrosis and tumour necrosis can 

contain lipids and lactates, but an increase in choline/N-acetyl-aspartate ratio greater than 1.8 may be a 

marker of recurrence rather than radiation necrosis [68,69]. At last, delayed acquisition after contrast 

enhancement (75min) may also help the distinction between tumour (contrast clearance) and non-

tumoral tissue (contrast accumulation) [70]. 

Analysis may be furthermore complicated by the coexistence of radiation necrosis and recurrence. 

Usage of high-resolution sequences and multivoxel MR spectroscopy may be helpful in these cases 

[71]. 

3.2.4.2. Pseudo response 
In case of treatment with antiangiogenic chemotherapy such as bevacizumab and cediranib, a 

normalization of the blood–brain barrier without tumour reduction can be observed. This can lead to a 

decreased enhancement of the tumour that can falsely be interpreted as tumoral response [67]. 

Accurate evaluation of non-enhancing tumour on FLAIR sequences and ADC maps as well as early 

follow-up will allow to rectify the diagnosis.  

4. Advanced post processings  

4.1. Automated segmentation 

With the increase of 3D sequences acquired for radiation planning, the manual delineation of region of 

interests becomes more and more complicated. Many techniques have been proposed in order to 

automatically (Figure S3) or semiautomatically delineate different glioblastoma component based on 

multimodal imaging. Free software such as BraTumIA for automatic segmentation, or ITK-Snap and 

3D Slicer are available for semi-automatic segmentation [72,73]. Recent developments tend to use 

deep learning as a framework for more efficient segmentations, such as the DeepMedic open-source 

algorithm [74]. 

4.2. Radiomics 

Radiomics is a computer-based framework based on the extraction of hundreds of tumour features 

from medical images and has multiple potential applications in the context of brain lesions: 

improvement of diagnosis, tumour grading, treatment response monitoring, outcome and survival 
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prediction [75]. The “radiomics” term was proposed ten years ago [76]. The number of studies on this 

topic has exploded recently, with more than 90 papers focused on neuro-oncology published these last 

four years. Regarding diagnosis, several studies have analysed the performances of radiomics features, 

used alone or in association with clinical features, to differentiate glioblastoma from solitary brain 

metastasis using retrospective cohorts of more than 100 patients [77–80]. Based on post-contrast 3D 

T1-weighted image mainly, accuracy values higher than 0.78 were reported in testing sets, suggesting 

the ability of such machine learning tools to assist physicians in this complex task in a near future. 

Always in diagnosis, a large number of studies were conducted to improve tumour grading based on 

multiparametric MRI considering conventional sequences and more advanced techniques (diffusion, 

perfusion and spectroscopy MR) [81]. Results are encouraging with classifiers achieving area under 

the receiver operator characteristic curve superior to 0.90. More challenging studies planned to predict 

glioma molecular subtypes (isocitrate dehydrogenase mutation status, 6-methylguanine-DNA 

methyltransferase promoter methylation) using machine-learning radiomics-based models [82]. 

Even if radiomics sounds as an attractive domain, readers should pay attention to the reported 

methodology as most of MR sequences suffer from being not quantitative, with possible motion, 

tissue-based and magnetic fields non-homogeneity artefacts. As well, all reported results must be 

analysed with caution as some studies report performances results in non-independent testing sets, 

which can lead to hazardous non generalizable results.  

4.3. Challenges in radiotherapy 

As described previously, advanced MR sequences are now widely used in the clinical management of 

primary lesions and metastasis for diagnosis and post-treatment monitoring purposes. However, no 

clear consensus exists yet about the use of functional imaging to modify delineated tumour areas or 

implement personalized heterogeneous dose distributions also known as dose painting [83,84]. 

The example of dynamic susceptibility contrast perfusion demonstrates the difficulty of the choice of 

the relative cerebral blood volume cutoff for a delineation purpose in patients with glioblastoma, 

whose optimization highly depends on the criterion used in published studies [85]. The observed 

results variability can also be explained by the various methods existing for relative cerebral blood 

volume estimation [86]. Khalifa et al. have analysed the ability of dynamic susceptibility contrast MRI 

to predict recurrence areas in high grade gliomas treated by chemoradiotherapy and obtained negative 

results in a cohort of 15 patients [87]. In the same cohort, results based on diffusion-weighted imaging 

sequences were also inconclusive. Based on ADC maps, Orlandi et al. calculated hypofractionated 

dose-painting by numbers plans for five patients with recurrent glioblastoma [88]. Dosimetric results 

showed that only three out of five patients could receive a safe treatment. In other cases, maximal dose 

to organs at risk were exceeded.  
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More concrete results were obtained based on MR spectroscopy and metabolite ratio metrics, even if it 

may be still challenging to obtain reliable and reproducible spectroscopy data [89]. Laprie et al. 

analysed in a longitudinal study correlation of spectral and morphologic abnormalities before any 

radiotherapy to relapse areas for 1207 voxels [90]. They showed that 75% of the regions in which an 

elevated choline/N-acetyl-aspartate ratio (greater than 2) was observed still corresponded to an 

elevated choline/N-acetyl-aspartate ratio at relapse. These results opened the way to two clinical trials 

that are still active today: the French multicentre phase III SPECTRO-GLIO clinical trial 

(NCT01507506) evaluating the impact of a choline/N-acetyl-aspartate boost of 72 Gy on overall 

survival and the US phase II clinical trial (NCT03137888) which aim is a feasibility study and toxicity 

analysis. Results of these clinical trials will be of importance for the future of dose painting in 

treatment of glioblastoma.   
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Supplementary figures S1-S3 available online. 
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Figure legends 

Figure 1. Morphological exploration of a glioblastoma by MRI. a: T1-weighted sequence without 

contrast; b: fluid-attenuated inversion recovery (FLAIR) sequence; c: T2-weighted sequence; d: 

diffusion-weighted sequence; e: T1-weighted sequence after contrast enhancement; f: T2* sequence. 

(a-c) show a temporo-occipital mass with an infiltration of the corpus callosum (arrowhead in b). The 

mass appears necrotic with hypercellular components in diffusion (d), peripheral enhancement on 

post-contrast T1-weighted sequence (e). Heterogeneity with potential haemorrhage or microvascular 

thrombi is detected on T2* sequence (arrowhead in f). 

 

Figure 2. Brain tumour detection and characterization by MRI: use of subtraction map in postoperative 

setup to detect potential residual tumour. a: T1-weighted sequence showing resection cavity with 

slight haemorrhage in high spontaneous T1 signal; b: T1-weighted sequence after contrast 

enhancement is difficult to interpret given the haemorrhage in high T1 intensity; c: Subtraction map 

confirming enhancement of the anterior part of the cavity (arrowhead). 

 

Figure 3. Brain tumour detection and characterization by MRI: comparison between tumoral 

infiltration and vasogenic oedema in fluid-attenuated inversion recovery (FLAIR) sequence. a: left 

temporal grade II glioma presenting with high intensity tumoral infiltration of the cortex, subcortical 

white matter, and hippocampus; b: left parietal melanoma metastasis surrounded with peripheral 

oedema in high FLAIR intensity (arrowhead). Note that the oedema does not involve the surrounding 

cortex. 

 

Figure 4: Glioblastoma assessment with Response Assessment in Neuro-Oncology (RANO) working 

group criteria. a-d: several T1-weighted sequence after contrast enhancement scans of a glioblastoma 

are displayed before surgery (a), after surgery (b), 12 weeks after radiotherapy (c) and 24 weeks after 

radiotherapy (d); e-h: corresponding fluid-attenuated inversion recovery (FLAIR) sequences, before 

(e) and after surgery (f), 12 weeks (g) and 24 weeks after radiotherapy (h). The reference MRI used for 

follow-up is the post-radiotherapy scan, in order to take into account early post-radiotherapy changes. 

Measurement of the lesion (lines in c) consists in two perpendicular axes per enhancing lesions greater 

than 1cm. A target lesion is individualized (rightmost occipital lesion, 34x19mm) as well as a non-

target lesion (leftmost lesion, long axis less than 10mm). Early control (d) shows a preliminary 

progression of the target lesion (sum of the diameters product: +250%) and a progression of non-target 

non-enhancing lesions (unequivocal progression of FLAIR hyperintensities in h). 
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Supplementary figures  

Figure S1. Brain tumour detection and characterization by MRI: example of a pseudo tumoral 

multiple sclerosis in a 25-years patient. a: fluid-attenuated inversion recovery (FLAIR) sequence 

showing a high intensity lesion in the left corona radiata; b: T1-weighted sequence after contrast 

enhancement showing an open peripheral enhancement (arrowhead); c: apparent diffusion coefficient 

(ADC) map showing a peripheral ADC restriction (arrowhead); d: spectroscopy showing a conserved 

ratio between choline (left asterisk) and N-acetyl-aspartate (right asterisk). 

 

Figure S2. Brain tumour detection and characterization by MRI: example of primary cerebral nervous 

system lymphoma with advanced imaging sequences. a: T1-weighted sequence after contrast 

enhancement shows multiple enhanced areas of the deep basal nuclei and corpus callosum splenium 

(arrowheads); b: DWI imaging shows high intensity areas within the enhanced lesion; c: apparent 

diffusion coefficient (ADC) map shows restricted ADC foci inside the lesion (arrowhead); d: relative 

cerebral blood volume map does not show increase of relative cerebral blood volume within the lesion 

(arrowhead); e: tumour perfusion curve (upper curve) does not show increased relative cerebral blood 

volume (similar area under the curve) as compared to normal brain (lower curve). The typical aspect 

of signal return above the baseline is highlighted by arrowheads; f: Spectroscopy within the lesion 

shows an increase choline peak (left asterisk) and decreased N-acetyl-aspartate peak (right asterisk), 

associated with a high lipid peak (triangle). 

 

Figure S3. Brain tumour detection and characterization by MRI: example of fully automatic 

segmentation with BraTumIA software. The glioblastoma shown in Figure 1 was segmented in less 

than 2 min. a,b: the segmentation is overlayed onto T1-weighted sequence after contrast enhancement 

(a) and T2 (b) images. The enhanced portion is overlayed in yellow, the necrosis in red, the infiltration 

in pink and the oedema in blue (default software colours). 
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