D. F. Horrobin, Schizophrenia as a prostaglandin deficiency disease, Lancet Lond Engl, vol.1, pp.936-937, 1977.

D. F. Horrobin, A. Glen, and K. Vaddadi, The membrane hypothesis of schizophrenia, Schizophr Res, vol.13, pp.195-207, 1994.

S. Sethi, M. Hayashi, and B. S. Barbosa, Biomarkers, and Schizophrenia: A Current Perspective. In: Sussulini A (ed) Metabolomics: From Fundamentals to Clinical Applications, pp.265-290

E. Fahy, S. Subramaniam, and H. A. Brown, A comprehensive classification system for lipids, J Lipid Res, vol.46, pp.839-861, 2005.

S. D. Doughman, S. Krupanidhi, and C. B. Sanjeevi, Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA, Curr Diabetes Rev, vol.3, pp.198-203, 2007.

G. Dawson, Measuring brain lipids, Biochim Biophys Acta BBA -Mol Cell Biol Lipids, vol.1851, pp.1026-1039, 2015.

W. Zhang, P. Li, and X. Hu, Omega-3 polyunsaturated fatty acids in the brain: metabolism and neuroprotection, Front Biosci Landmark Ed, vol.16, pp.2653-2670, 2011.

J. Delpech, C. Madore, and C. Joffre, Transgenic increase in n-3/n-6 fatty acid ratio protects against cognitive deficits induced by an immune challenge through decrease of neuroinflammation, Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol, vol.40, pp.525-536, 2015.

S. K. Orr, M. Trépanier, and R. P. Bazinet, n-3 Polyunsaturated fatty acids in animal models with neuroinflammation, Prostaglandins Leukot Essent Fat Acids PLEFA, vol.88, pp.97-103, 2013.

C. Janssen and A. J. Kiliaan, Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration, Prog Lipid Res, vol.53, pp.1-17, 2014.

P. Green, S. Glozman, and B. Kamensky, Developmental changes in rat brain membrane lipids and fatty acids: the preferential prenatal accumulation of docosahexaenoic acid, J Lipid Res, vol.40, pp.960-966, 1999.

S. Chalon, Omega-3 fatty acids and monoamine neurotransmission, Prostaglandins Leukot Essent Fatty Acids, vol.75, pp.259-269, 2006.

L. A. Horrocks and A. A. Farooqui, Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function, Prostaglandins Leukot Essent Fatty Acids, vol.70, pp.361-372, 2004.

B. Miller, M. Sarantis, and S. F. Traynelis, Potentiation of NMDA receptor currents by arachidonic acid, Nature, vol.355, pp.722-725, 1992.

N. R. Herring and C. Konradi, Myelin, copper, and the cuprizone model of schizophrenia, Front Biosci Sch Ed, vol.3, p.23, 2011.

R. I. Castillo, L. E. Rojo, and M. Henriquez-henriquez, From Molecules to the Clinic: Linking Schizophrenia and Metabolic Syndrome through Sphingolipids Metabolism. Front Neurosci; 10. Epub ahead of print 8, 2016.

G. Barceló-coblijn, E. Högyes, and K. Kitajka, Modification by docosahexaenoic acid of ageinduced alterations in gene expression and molecular composition of rat brain phospholipids, Proc Natl Acad Sci U S A, vol.100, pp.11321-11326, 2003.

S. Kavraal, S. K. Oncu, and S. Bitiktas, Maternal intake of Omega-3 essential fatty acids improves long term potentiation in the dentate gyrus and Morris water maze performance in rats, Brain Res, vol.1482, pp.32-39, 2012.

A. I. Zugno, H. L. Chipindo, and A. M. Volpato, Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia, Neuroscience, vol.259, pp.223-231, 2014.

V. F. Labrousse, A. Nadjar, and C. Joffre, Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice, PloS One, vol.7, p.36861, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01191175

M. Lafourcade, T. Larrieu, and S. Mato, Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions, Nat Neurosci, vol.14, pp.345-350, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00612705

T. Larrieu, C. Madore, and C. Joffre, Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice, J Physiol Biochem, vol.68, pp.671-681, 2012.

A. Manduca, A. Bara, and T. Larrieu, Amplification of mGlu 5 -endocannabinoid signaling rescues behavioral and synaptic deficits in a mouse model of adolescent and adult dietary polyunsaturated fatty acids imbalance, J Neurosci, pp.3516-3532, 2017.

S. Watanabe, M. Doshi, and T. Hamazaki, Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice, Prostaglandins Leukot Essent Fatty Acids, vol.69, pp.51-59, 2003.

C. O. Bondi, A. Y. Taha, and J. L. Tock, Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency, Biol, 2014.

I. Fedorova and N. Salem, Omega-3 fatty acids and rodent behavior, Prostaglandins Leukot Essent Fatty Acids, vol.75, pp.271-289, 2006.

T. Larrieu, M. L. Hilal, and L. M. Hilal, Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behaviour through corticosterone secretion, Transl Psychiatry, vol.4, p.437, 2014.

M. Maekawa, A. Watanabe, and Y. Iwayama, Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes, Transl Psychiatry, vol.7, p.1229, 2017.

Z. Nagy, H. Westerberg, and T. Klingberg, Maturation of white matter is associated with the development of cognitive functions during childhood, J Cogn Neurosci, vol.16, pp.1227-1233, 2004.

G. Saher, B. Brügger, and C. Lappe-siefke, High cholesterol level is essential for myelin membrane growth, Nat Neurosci, vol.8, pp.468-475, 2005.

S. Pajevic, P. J. Basser, and R. D. Fields, Role of myelin plasticity in oscillations and synchrony of neuronal activity, Neuroscience, vol.276, pp.135-147, 2014.

D. Biase, A. Salvati, S. , D. Benedetto, and R. , Eicosapentaenoic acid pre-treatment reduces biochemical changes induced in total brain and myelin of weanling Wistar rats by cuprizone feeding, Prostaglandins Leukot Essent Fat Acids PLEFA, vol.90, pp.99-104, 2014.

M. Makinodan, T. Yamauchi, and K. Tatsumi, Demyelination in the juvenile period, but not in adulthood, leads to long-lasting cognitive impairment and deficient social interaction in mice, Prog Neuropsychopharmacol Biol Psychiatry, vol.33, pp.978-985, 2009.

B. D. Peters, M. Machielsen, and W. P. Hoen, Polyunsaturated Fatty Acid Concentration Predicts Myelin Integrity in Early-Phase Psychosis, Schizophr Bull, vol.39, pp.830-838, 2013.

W. P. Hoen, J. G. Lijmer, and M. Duran, Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: A meta-analysis, Psychiatry Res, vol.207, pp.1-12, 2013.

A. Y. Taha, Y. Cheon, and K. Ma, Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients, J Psychiatr Res, vol.47, pp.636-643, 2013.

C. Yuksel, C. Tegin, O. Connor, and L. , Phosphorus magnetic resonance spectroscopy studies in schizophrenia, J Psychiatr Res, vol.68, pp.157-166, 2015.

W. S. Harris, D. Gobbo, L. Tintle, and N. L. , The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies, Atherosclerosis, vol.262, pp.51-54, 2017.

E. Messamore and R. K. Mcnamara, Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation, Lipids Health Dis, vol.15, p.25, 2016.

A. S. Abdelhamid, N. Martin, and C. Bridges, Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease, Cochrane Database Syst Rev, vol.7, p.12345, 2018.

Z. S. Tan, W. S. Harris, and A. S. Beiser, Red blood cell ?-3 fatty acid levels and markers of accelerated brain aging, Neurology, vol.78, pp.658-664, 2012.

R. K. Mcnamara, J. Able, and R. Jandacek, Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study, Am J Clin Nutr, vol.91, pp.1060-1067, 2010.

R. K. Mcnamara, P. R. Szeszko, and S. Smesny, Polyunsaturated fatty acid biostatus, phospholipase A2 activity and brain white matter microstructure across adolescence, Neuroscience, vol.343, pp.423-433, 2017.

P. L. Wood and N. R. Holderman, Dysfunctional glycosynapses in schizophrenia: Disease and regional specificity, Schizophr Res. Epub, 2015.

F. Du, A. J. Cooper, and T. Thida, Myelin and Axon Abnormalities in Schizophrenia Measured with Magnetic Resonance Imaging Techniques, Biol Psychiatry, vol.74, pp.451-457, 2013.

C. Tessier, K. Sweers, and A. Frajerman, Membrane lipidomics in schizophrenia patients: a correlational study with clinical and cognitive manifestations, Transl Psychiatry, vol.6, p.906, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01380206

L. Sun, X. Yang, and J. Jiang, Identification of the Niacin-Blunted Subgroup of Schizophrenia Patients from Mood Disorders and Healthy Individuals in Chinese Population, Schizophr Bull

A. Bureti?-tomljanovi?, J. Giacometti, and S. Nadalin, Phospholipid membrane abnormalities and reduced niacin skin flush response in schizophrenia, Psychiatr Danub, vol.20, pp.372-383, 2008.

S. Smesny, T. Rosburg, and K. Baur, Cannabinoids influence lipid-arachidonic acid pathways in schizophrenia, Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol, vol.32, pp.2067-2073, 2007.

C. Hudson, A. Gotowiec, and M. Seeman, Clinical subtyping reveals significant differences in calcium-dependent phospholipase A2 activity in schizophrenia, Biol Psychiatry, vol.46, pp.401-405, 1999.

W. F. Gattaz, M. Köllisch, and T. Thuren, Increased plasma phospholipase-A2 activity in schizophrenic patients: Reduction after neuroleptic therapy, Biol Psychiatry, vol.22, pp.421-426, 1987.

S. Smesny, B. Milleit, and I. Nenadic, Phospholipase A2 activity is associated with structural brain changes in schizophrenia, NeuroImage, vol.52, pp.1314-1327, 2010.

M. H. Rapaport, A. A. Nierenberg, and P. J. Schettler, Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study, Mol Psychiatry, vol.21, pp.71-79, 2016.

S. J. Bigornia, W. S. Harris, and L. M. Falcón, The Omega-3 Index Is Inversely Associated with Depressive Symptoms among Individuals with Elevated Oxidative Stress Biomarkers, J Nutr, vol.146, pp.758-766, 2016.

B. Misiak, B. Sta?czykiewicz, and ?. ?aczma?ski, Lipid profile disturbances in antipsychoticnaive patients with first-episode non-affective psychosis: A systematic review and metaanalysis, Schizophr Res, vol.190, pp.18-27, 2017.

J. Mcevoy, R. A. Baillie, and H. Zhu, Lipidomics Reveals Early Metabolic Changes in Subjects with Schizophrenia: Effects of Atypical Antipsychotics, PLoS ONE, vol.8, p.68717, 2013.

T. Pawe?czyk, M. Grancow-grabka, and M. Kotlicka-antczak, A randomized controlled study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 polyunsaturated fatty acids in first episode schizophrenia, J Psychiatr Res, vol.73, pp.34-44, 2016.

T. Pawe?czyk, E. Pi?tkowska-janko, and P. Bogorodzki, Omega-3 fatty acid supplementation may prevent loss of gray matter thickness in the left parieto-occipital cortex in first episode schizophrenia: A secondary outcome analysis of the OFFER randomized controlled study, Schizophr Res, vol.195, pp.168-175, 2018.

S. Smesny, C. Kunstmann, and S. Kunstmann, Phospholipase A? activity in first episode schizophrenia: associations with symptom severity and outcome at week 12, World J Biol Psychiatry Off J World Fed Soc Biol Psychiatry, vol.12, pp.598-607, 2011.

N. Vijayakumar, C. Bartholomeusz, and T. Whitford, White matter integrity in individuals at ultra-high risk for psychosis: a systematic review and discussion of the role of polyunsaturated fatty acids, BMC Psychiatry, vol.16, p.287, 2016.

B. Chaumette, O. Kebir, and J. Pouch, Longitudinal Analyses of Blood Transcriptome During Conversion to Psychosis, Schizophr Bull

S. M. Rice, M. R. Schäfer, and C. Klier, Erythrocyte polyunsaturated fatty acid levels in young people at ultra-high risk for psychotic disorder and healthy adolescent controls, Psychiatry Res, vol.228, pp.174-176, 2015.

G. P. Amminger, M. R. Schäfer, and K. Papageorgiou, Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial, Arch Gen Psychiatry, vol.67, pp.146-154, 2010.

G. P. Amminger, M. R. Schäfer, and M. Schlögelhofer, Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study, Nat Commun, vol.6, p.7934, 2015.

N. Mossaheb, M. R. Schäfer, and M. Schlögelhofer, Predictors of longer-term outcome in the Vienna omega-3 high-risk study, Schizophr Res, vol.193, pp.168-172, 2018.

S. Smesny, B. Milleit, and U. Hipler, Omega-3 fatty acid supplementation changes intracellular phospholipase A2 activity and membrane fatty acid profiles in individuals at ultrahigh risk for psychosis, Mol Psychiatry, vol.19, pp.317-324, 2014.

P. D. Mcgorry, B. Nelson, and C. Markulev, Effect of ?-3 Polyunsaturated Fatty Acids in Young People at Ultrahigh Risk for Psychotic Disorders: The NEURAPRO Randomized Clinical Trial, JAMA Psychiatry, vol.74, pp.19-27, 2017.

M. Schlögelhofer, P. Mcgorry, and . Smesny-stefan, The Neurapro Study: Adherence to Study Medication

H. Bentsen, K. Osnes, and H. Refsum, A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia, Transl Psychiatry, vol.3, p.335, 2013.

D. C. Goff, K. Romero, and J. Paul, Biomarkers for drug development in early psychosis: Current issues and promising directions, Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol, vol.26, pp.923-937, 2016.

S. R. Clark, B. T. Baune, and K. O. Schubert, Prediction of transition from ultra-high risk to firstepisode psychosis using a probabilistic model combining history, clinical assessment and fattyacid biomarkers, Transl Psychiatry, vol.6, p.897, 2016.

A. I. Glen, E. M. Glen, and D. F. Horrobin, A red cell membrane abnormality in a subgroup of schizophrenic patients: evidence for two diseases, Schizophr Res, vol.12, pp.53-61, 1994.

H. Bentsen, D. K. Solberg, and H. Refsum, Bimodal distribution of polyunsaturated fatty acids in schizophrenia suggests two endophenotypes of the disorder, Biol Psychiatry, vol.70, pp.97-105, 2011.

P. Nuss, C. Tessier, and F. Ferreri, Abnormal transbilayer distribution of phospholipids in red blood cell membranes in schizophrenia, Psychiatry Res, vol.169, pp.91-96, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00416470

A. O'gorman, T. Suvitaival, and L. Ahonen, Identification of a plasma signature of psychotic disorder in children and adolescents from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, Transl Psychiatry, vol.7, p.1240, 2017.

J. Davison, A. O'gorman, and L. Brennan, A systematic review of metabolite biomarkers of schizophrenia, Schizophr Res, vol.195, pp.32-50, 2018.

M. E. Hudgens-haney, L. E. Ethridge, and J. E. Mcdowell, Psychosis subgroups differ in intrinsic neural activity but not task-specific processing, Schizophr Res, vol.195, pp.222-230, 2018.

E. Messamore, The niacin response biomarker as a schizophrenia endophenotype: A status update, Prostaglandins Leukot Essent Fatty Acids, vol.136, pp.95-97, 2018.

C. Chang, P. Tseng, and N. Chen, Safety and tolerability of prescription omega-3 fatty acids: A systematic review and meta-analysis of randomized controlled trials, Prostaglandins Leukot Essent Fatty Acids, vol.129, pp.1-12, 2018.