P. P. Maldonado, M. Vélez-fort, and M. C. Angulo, Is neuronal communication with NG2 cells synaptic or extrasynaptic?, J. Anat, vol.219, pp.8-17, 2011.

C. Habermacher, M. C. Angulo, and N. Benamer, Glutamate versus GABA in neuronoligodendroglia communication, Glia, vol.67, issue.11, pp.2092-2106, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02302599

N. Kessaris, M. Fogarty, P. Iannarelli, M. Grist, M. Wegner et al., Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage, Nat. Neurosci, vol.9, pp.173-179, 2006.

B. Wamsley and G. Fishell, Genetic and activity-dependent mechanisms underlying interneuron diversity, Nat. Rev. Neurosci, vol.18, pp.299-309, 2017.

D. G. Southwell, M. F. Paredes, R. P. Galvao, D. L. Jones, R. C. Froemke et al., Intrinsically determined cell death of developing cortical interneurons, Nature, vol.491, pp.109-113, 2012.

F. K. Wong, K. Bercsenyi, V. Sreenivasan, A. Portalés, M. Fernández-otero et al., Pyramidal cell regulation of interneuron survival sculpts cortical networks, Nature, vol.557, pp.668-673, 2018.

L. O. Sun, S. B. Mulinyawe, H. Y. Collins, A. Ibrahim, Q. Li et al., Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis, Cell, vol.175, pp.1811-1826, 2018.

A. Voronova, S. A. Yuzwa, B. S. Wang, S. Zahr, C. Syal et al., Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain, Neuron, vol.94, pp.500-516, 2017.

C. C. Winkler, O. R. Yabut, S. P. Fregoso, H. G. Gomez, B. E. Dwyer et al., The dorsal wave of neocortical oligodendrogenesis begins embryonically and requires multiple sources of sonic hedgehog, J. Neurosci, vol.38, pp.5237-5250, 2018.

M. Vélez-fort, P. P. Maldonado, A. M. Butt, E. Audinat, and M. C. Angulo, Postnatal switch from synaptic to extrasynaptic transmission between interneurons and NG2 cells, J. Neurosci, vol.30, pp.6921-6929, 2010.

D. Orduz, P. P. Maldonado, M. Balia, M. Vélez-fort, V. De-sars et al., Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex, Elife, vol.4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02302602

K. D. Micheva, D. Wolman, B. D. Mensh, E. Pax, J. Buchanan et al., A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons, Elife, vol.5, 2016.

M. Balia, N. Benamer, and M. C. Angulo, A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis, Glia, vol.65, pp.1821-1832, 2017.

J. Stedehouder, J. J. Couey, D. Brizee, B. Hosseini, J. A. Slotman et al., Fast-spiking parvalbumin interneurons are frequently myelinated in the cerebral cortex of mice and humans, Cereb. Cortex, vol.27, pp.5001-5013, 2017.

L. L. Boshans, D. C. Factor, V. Singh, J. Liu, C. Zhao et al., The chromatin environment around interneuron genes in oligodendrocyte precursor cells and their potential for interneuron reprograming, Front. Neurosci, vol.13, 2019.

I. Jakovcevski, R. Filipovic, Z. Mo, S. Rakic, and N. Zecevic, Oligodendrocyte development and the onset of myelination in the human fetal brain, Front. Neuroanat, vol.3, 2009.

T. Ma, C. Wang, L. Wang, X. Zhou, M. Tian et al., Subcortical origins of human and monkey neocortical interneurons, Nat. Neurosci, vol.16, pp.1588-1597, 2013.

A. Teissier, A. Griveau, L. Vigier, T. Piolot, U. Borello et al., A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development, J. Neurosci, vol.30, pp.10563-10574, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509906

D. M. Gelman, F. J. Martini, S. Nóbrega-pereira, A. Pierani, N. Kessaris et al., The embryonic preoptic area is a novel source of cortical GABAergic interneurons, J. Neurosci, vol.29, pp.9380-9389, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00419400

Q. Xu, I. Cobos, E. De-la, J. L. Cruz, S. A. Rubenstein et al., Origins of cortical interneuron subtypes, J. Neurosci, vol.24, pp.2612-2622, 2004.

M. Fogarty, M. Grist, D. Gelman, O. Marín, V. Pachnis et al., Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex, J. Neurosci, vol.27, pp.10935-10946, 2007.

G. Miyoshi, S. J. Butt, H. Takebayashi, and G. Benamer, Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing N, Neuroscience Letters, vol.715, p.134615, 2020.

, J. Neurosci, vol.27, pp.7786-7798, 2007.

S. J. Butt, V. H. Sousa, M. V. Fuccillo, J. Hjerling-leffler, G. Miyoshi et al., The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes, Neuron, vol.59, pp.722-732, 2008.

R. W. Tsoa, V. Coskun, C. K. Ho, J. Vellis, and Y. E. Sun, Spatiotemporally different origins of NG2 progenitors produce cortical interneurons versus glia in the mammalian forebrain, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.7444-7449, 2014.

G. Miyoshi, J. Hjerling-leffler, T. Karayannis, V. H. Sousa, S. J. Butt et al., Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons, J. Neurosci, vol.30, pp.1582-1594, 2010.

D. Inta, J. Alfonso, J. Engelhardt, M. M. Kreuzberg, A. H. Meyer et al., Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.20994-20999, 2008.

S. Minocha, D. Valloton, I. Brunet, A. Eichmann, J. Hornung et al., NG2 glia are required for vessel network formation during embryonic development, ELife, vol.4, 2019.

F. Causeret, E. Coppola, and A. Pierani, Cortical developmental death: selected to survive or fated to die, Curr. Opin. Neurobiol, vol.53, pp.35-42, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01799906

D. Orduz, N. Benamer, D. Ortolani, E. Coppola, L. Vigier et al., Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis, Nat. Commun, vol.10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02302596

S. Marques, D. Van-bruggen, D. P. Vanichkina, E. M. Floriddia, H. Munguba et al., Transcriptional convergence of oligodendrocyte lineage progenitors during development, Dev. Cell, vol.46, pp.504-517, 2018.

A. H. Crawford, R. B. Tripathi, W. D. Richardson, and R. J. Franklin, Developmental origin of oligodendrocyte lineage cells determines response to demyelination and susceptibility to age-associated functional decline, Cell Rep, vol.15, pp.761-773, 2016.

M. Vélez-fort, E. Audinat, and M. C. Angulo, Central role of GABA in neuron-glia interactions, Neuroscientist, vol.18, pp.237-250, 2012.

K. Luyt, T. P. Slade, J. J. Dorward, C. F. Durant, Y. Wu et al., Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration, J. Neurochem, vol.100, pp.822-840, 2007.

G. López-bendito, R. Luján, R. Shigemoto, P. Ganter, O. Paulsen et al., Blockade of GABA(B) receptors alters the tangential migration of cortical neurons, Cereb. Cortex, vol.13, pp.932-942, 2003.

M. Balia, M. Vélez-fort, S. Passlick, C. Schäfer, E. Audinat et al., Postnatal down-regulation of the GABAA receptor ?2 subunit in neocortical NG2 cells accompanies synaptic-to-extrasynaptic switch in the GABAergic transmission mode, Cereb. Cortex, vol.25, pp.1114-1123, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02302611

R. O. Arellano, M. V. Sánchez-gómez, E. Alberdi, M. Canedo-antelo, J. C. Chara et al., Axon-to-glia interaction regulates GABAA receptor expression in oligodendrocytes, Mol. Pharmacol, vol.89, pp.63-74, 2016.

S. Lin and D. E. Bergles, Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus, Nat. Neurosci, vol.7, pp.24-32, 2004.

M. Kukley, M. Kiladze, R. Tognatta, M. Hans, D. Swandulla et al., Glial cells are born with synapses, FASEB J, vol.22, pp.2957-2969, 2008.

M. Zonouzi, J. Scafidi, P. Li, B. Mcellin, J. Edwards et al., GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury, Nat. Neurosci, vol.18, pp.674-682, 2015.

C. Essrich, M. Lorez, J. A. Benson, J. M. Fritschy, and B. Lüscher, Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin, Nat. Neurosci, vol.1, pp.563-571, 1998.

J. J. Boulanger and C. Messier, Oligodendrocyte progenitor cells are paired with GABA neurons in the mouse dorsal cortex: unbiased stereological analysis, Neuroscience, vol.362, pp.127-140, 2017.

N. B. Hamilton, L. E. Clarke, I. L. Arancibia-carcamo, E. Kougioumtzidou, M. Matthey et al., Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length, Glia, vol.65, pp.309-321, 2017.

M. Zonouzi, D. Berger, V. Jokhi, A. Kedaigle, J. Lichtman et al., Individual oligodendrocytes show Bias for inhibitory axons in the neocortex, Cell Rep, vol.27, pp.2799-2808, 2019.

J. Stedehouder and S. A. Kushner, Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia, Mol. Psychiatry, vol.22, pp.4-12, 2017.

P. Somogyi, Z. F. Kisvárday, K. A. Martin, and D. Whitteridge, Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat, Neuroscience, vol.10, issue.83, pp.90133-90134, 1983.

J. Defelipe, S. H. Hendry, and E. G. Jones, A correlative electron microscopic study of basket cells and large gabaergic neurons in the monkey sensory-motor cortex, Neuroscience, vol.17, issue.86, pp.90075-90083, 1986.

K. D. Micheva, E. F. Chang, A. L. Nana, W. W. Seeley, J. T. Ting et al., Distinctive structural and molecular features of myelinated inhibitory axons in human neocortex, ENeuro, vol.5, 2018.

H. Kita, T. Kosaka, and C. W. Heizmann, Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study, Brain Res, vol.536, pp.1-15, 1990.

S. D. Biasi, A. Amadeo, P. Arcelli, C. Frassoni, and R. Spreafico, Postnatal development of GABA-immunoreactive terminals in the reticular and ventrobasal nuclei of the rat thalamus: a light and electron microscopic study, Neuroscience, vol.76, pp.503-515, 1997.

L. Seress, A. I. Gulyás, I. Ferrer, T. Tunon, E. Soriano et al., Distribution, morphological features, and synaptic connections of parvalbumin-and calbindin D28k-immunoreactive neurons in the human hippocampal formation, J. Comp. Neurol, vol.337, pp.208-230, 1993.

M. Simons and K. Nave, Oligodendrocytes: myelination and axonal support, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

M. C. Angulo, J. F. Staiger, J. Rossier, and E. Audinat, Developmental synaptic changes increase the range of integrative capabilities of an identified excitatory neocortical connection, J. Neurosci, vol.19, pp.1566-1576, 1999.

A. K. Moore and M. Wehr, A guide to in vivo single-unit recording from optogenetically identified cortical inhibitory interneurons, J. Vis. Exp, p.51757, 2014.

S. A. Freeman, A. Desmazières, J. Simonnet, M. Gatta, F. Pfeiffer et al., Sol-Foulon, Acceleration of conduction velocity linked to clustering of nodal components precedes myelination, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.321-328, 2015.

J. Stedehouder, D. Brizee, G. Shpak, and S. A. Kushner, Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity, J. Neurosci, vol.38, pp.3631-3642, 2018.

A. Guidotti, J. Auta, J. M. Davis, V. Di-giorgi-gerevini, Y. Dwivedi et al., Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study, Arch. Gen. Psychiatry, vol.57, pp.1061-1069, 2000.

S. J. Fung, M. J. Webster, S. Sivagnanasundaram, C. Duncan, M. Elashoff et al., Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia, Am. J. Psychiatry, vol.167, pp.1479-1488, 2010.

A. A. Curley, D. Arion, D. W. Volk, J. K. Asafu-adjei, A. R. Sampson et al., Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features, Am. J. Psychiatry, vol.168, pp.921-929, 2011.

J. R. Glausier, K. N. Fish, and D. A. Lewis, Altered parvalbumin basket cell inputs in the dorsolateral prefrontal cortex of schizophrenia subjects, Mol. Psychiatry, vol.19, pp.30-36, 2014.

P. A. Tooney and L. A. Chahl, Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia, Prog. Neuropsychopharmacol. Biol. Psychiatry, vol.28, pp.273-278, 2004.

V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, Parvalbumin neurons and gamma rhythms enhance cortical circuit performance, Nature, vol.459, pp.698-702, 2009.

G. Buzsáki and X. Wang, Mechanisms of gamma oscillations, Annu. Rev. Neurosci, vol.35, pp.203-225, 2012.

R. Y. Cho, R. O. Konecky, and C. S. Carter, Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia, Proc. Natl. Acad. Sci. U. S. A, vol.103, 2006.

M. J. Minzenberg, A. J. Firl, J. H. Yoon, G. C. Gomes, C. Reinking et al., Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia, Neuropsychopharmacology, vol.35, pp.2590-2599, 2010.

R. D. Fields, White matter in learning, cognition and psychiatric disorders, Trends Neurosci, vol.31, pp.361-370, 2008.

S. W. Flynn, D. J. Lang, A. L. Mackay, V. Goghari, I. M. Vavasour et al., Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins, Mol. Psychiatry, vol.8, pp.811-820, 2003.

P. Alvarado-alanis, P. León-ortiz, F. Reyes-madrigal, R. Favila, O. Rodríguez-mayoral et al., Abnormal white matter integrity in antipsychotic-naïve firstepisode psychosis patients assessed by a DTI principal component analysis, Schizophr. Res, vol.162, pp.14-21, 2015.

R. A. Kanaan, M. M. Picchioni, C. Mcdonald, S. S. Shergill, and P. K. Mcguire, White matter deficits in schizophrenia are global and don't progress with age, Aust. N. Z. J. Psychiatry, vol.51, pp.1020-1031, 2017.

F. M. De-vrij, C. G. Bouwkamp, N. Gunhanlar, G. Shpak, B. Lendemeijer et al., Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia, Mol. Psychiatry, vol.24, issue.5, pp.757-771, 2019.

O. J. Bloemen, M. B. De-koning, N. Schmitz, D. H. Nieman, H. E. Becker et al., White-matter markers for psychosis in a prospective ultra-high-risk cohort, Psychol. Med, vol.40, pp.1297-1304, 2010.

S. A. Mauney, C. Y. Pietersen, K. Sonntag, and T. W. Woo, Differentiation of oligodendrocyte precursors is impaired in the prefrontal cortex in schizophrenia, Schizophr. Res, vol.169, pp.374-380, 2015.

L. E. Duncan, P. A. Holmans, P. H. Lee, C. T. O'dushlaine, A. W. Kirby et al., Pathway analyses implicate glial cells in schizophrenia, PLoS One, vol.9, p.89441, 2014.

M. S. Windrem, M. Osipovitch, Z. Liu, J. Bates, D. Chandler-militello et al., Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia, Cell Stem Cell, vol.21, pp.195-208, 2017.

D. Ortolani, D. Ortolani, B. Manot-saillet, D. Orduz, F. C. Ortiz et al., In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups, Front. Cell. Neurosci, vol.6, issue.12, p.477, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02302601

N. Benamer, Neuroscience Letters, vol.715, p.134615, 2020.