F. B. and T. S. , are employees of Physiogenex SAS. C.T is employee of Lifesearch SAS. None of the other authors has any conflicts of interest, financial or otherwise

P. Angulo, Nonalcoholic fatty liver disease, N Engl J Med, vol.346, pp.1221-1242, 2002.

M. J. Armstrong, P. Gaunt, G. P. Aithal, D. Barton, D. Hull et al., Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study, Lancet, vol.387, pp.679-690, 2016.

T. Arsov, C. Z. Larter, C. J. Nolan, N. Petrovsky, C. C. Goodnow et al., Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice, Biochem Biophys Res Commun, vol.342, pp.1152-1159, 2006.

M. S. Ascha, I. A. Hanouneh, R. Lopez, T. Tamimi, A. F. Feldstein et al., The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis, Hepatology, vol.51, pp.1972-1978, 2010.

J. B. Buse, J. Rosenstock, G. Sesti, W. E. Schmidt, E. Montanya et al., Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6), Lancet, vol.374, pp.39-47, 2009.

N. Chalasani, Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi et al., The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the, Hepatology, vol.67, pp.328-357, 2018.

A. Christian, M. P. Haynes, M. Phillips, H. George, M. P. Haynes et al., Use of cyclodextrins for manipulating cholesterol content, J Lipid Res, vol.38, pp.2264-2272, 1997.

Q. G. Deng, H. She, J. H. Cheng, S. W. French, D. R. Koop et al., Steatohepatitis induced by intragastric overfeeding in mice, Hepatology, vol.42, pp.905-914, 2005.

C. Estes, H. Razavi, R. Loomba, Z. Younossi, and A. J. Sanyal, Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease, Hepatology, vol.67, pp.123-133, 2018.

G. C. Farrell, A. R. Mridha, M. M. Yeh, T. Arsov, D. M. Van-rooyen et al., Strain dependence of diet-induced NASH and liver fibrosis in obese mice is linked to diabetes and inflammatory phenotype, Liver Int, vol.34, pp.1084-1093, 2014.

W. Feng, C. Gao, Y. Bi, M. Wu, P. Li et al., Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease, J Diabetes, vol.9, pp.800-809, 2017.

J. Folch, M. Lees, and G. Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J Biol Chem, vol.226, pp.497-509, 1957.

C. G. Fraga, B. E. Leibovitz, A. L. Tappel, I. N. Tissue, C. G. Fraga et al., Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes, Free Radic Biol Med, vol.4, pp.155-161, 1988.

S. L. Friedman, B. A. Neuschwander-tetri, M. Rinella, and A. J. Sanyal, Mechanisms of NAFLD development and therapeutic strategies, Nat Med, vol.24, pp.908-922, 2018.

H. Gao, Z. Zeng, H. Zhang, X. Zhou, L. Guan et al., The Glucagon-Like Peptide, issue.1

, Analogue Liraglutide Inhibits Oxidative Stress and Inflammatory Response in the Liver of Rats with Diet-Induced Non-alcoholic Fatty Liver Disease, Biol Pharm Bull Pharm Bull, vol.38, pp.694-702, 2015.

A. Garber, R. Henry, R. Ratner, P. A. Garcia-hernandez, H. Rodriguez-pattzi et al., Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial, Lancet, vol.373, pp.473-481, 2009.

S. C. Gough, J. Yu, D. Barton, K. Guo, J. W. Tomlinson et al., Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis, J Hepatol, vol.64, pp.399-408, 2015.

J. Khoo, J. Hsiang, R. Taneja, N. M. Law, and T. L. Ang, Comparative effects of liraglutide 3 mg vs structured lifestyle modification on body weight, liver fat and liver function in obese patients with non-alcoholic fatty liver disease: A pilot randomized trial, Diabetes, Obes Metab, vol.19, pp.1814-1817, 2017.

D. E. Kleiner, E. M. Brunt, M. Van-natta, C. Behling, M. J. Contos et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease, Hepatology, vol.41, pp.1313-1321, 2005.

M. Machado and A. M. Diehl, Animal models of nonalcoholic fatty liver disease, Alcohol Non-Alcoholic Fat Liver Dis Bench to Bedside, vol.8, pp.121-145, 2015.

N. Matsuzawa, T. Takamura, S. Kurita, H. Misu, T. Ota et al., Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet, Hepatology, vol.46, pp.1392-1403, 2007.

A. J. Mccullough, Epidemiology of the metabolic syndrome in the USA, J. Dig. Dis, pp.333-340, 2011.

J. E. Mells, P. P. Fu, S. Sharma, D. Olson, L. Cheng et al., Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet, AJP Gastrointest Liver Physiol, vol.302, pp.225-235, 2012.

G. V. Moreira, F. F. Azevedo, L. M. Ribeiro, A. Santos, D. Guadagnini et al., Liraglutide modulates gut microbiota and reduces NAFLD in obese mice, J Nutr Biochem, vol.62, pp.143-154, 2018.

C. Murphy, P. Parini, J. Wang, I. Björkhem, G. Eggertsen et al., Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice, Biochim Biophys Acta -Mol Cell Biol Lipids, vol.1735, pp.167-175, 2005.

S. Sanches, L. Ramalho, M. J. Augusto, D. Silva, D. M. Ramalho et al., Nonalcoholic Steatohepatitis: A Search for Factual Animal Models, Biomed Res Int, vol.27, pp.230-237, 2015.

S. Shpyleva, M. Pogribna, C. Cozart, M. S. Bryant, L. Muskhelishvili et al., Interstrain differences in the progression of nonalcoholic steatohepatitis to fibrosis in mice are associated with altered hepatic iron metabolism, J Nutr Biochem, vol.25, pp.1235-1242, 2014.

S. Spahis, E. Delvin, J. Borys, and E. Levy, Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis, Antioxid Redox Signal, vol.26, pp.519-541, 2016.

K. Stephenson, L. Kennedy, L. Hargrove, J. Demieville, J. Thomson et al., Updates on dietary models of nonalcoholic fatty liver disease: Current studies and insights, Gene Expr, vol.18, pp.5-17, 2018.

E. Szabados, G. M. Fischer, K. Toth, B. Csete, B. Nemeti et al., Role of reactive oxygen species and poly-ADP-ribose polymerase in the development of AZT-induced cardiomyopathy in rat

, Free Radic Biol ?, vol.26, pp.309-317, 1999.

K. S. Tølbøl, M. Kristiansen, H. H. Hansen, S. S. Veidal, K. Rigbolt et al., Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in dietinduced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis, World J Gastroenterol, vol.24, pp.179-194, 2018.

V. Trak-smayra, V. Paradis, J. Massart, S. Nasser, V. Jebara et al., Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a standard or high-calorie diet, Int J Exp Pathol, vol.92, pp.413-421, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00741688

S. Traussnigg, C. Kienbacher, E. Halilbasic, C. Rechling, L. Kazemi-shirazi et al., Challenges and Management of Liver Cirrhosis: Practical Issues in the Therapy of Patients with Cirrhosis due to NAFLD and NASH, Dig Dis, vol.33, pp.598-607, 2015.

V. Tryndyak, D. Conti, A. Kobets, T. Kutanzi, K. Koturbash et al., Interstrain differences in the severity of liver injury induced by a choline-and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism, FASEB J, vol.26, pp.4592-4602, 2012.

M. Tsuchiya, C. Ji, O. Kosyk, S. Shymonyak, S. Melnyk et al., Interstrain differences in liver injury and one-carbon metabolism in alcohol-fed mice, Hepatology, vol.56, pp.130-139, 2012.

L. Vergnes, J. Phan, M. Strauss, S. Tafuri, and K. Reue, Cholesterol and Cholate Components of an Atherogenic Diet Induce Distinct Stages of Hepatic Inflammatory Gene Expression, J Biol Chem, vol.278, pp.42774-42784, 2003.

M. Watanabe, Y. Horai, S. M. Houten, K. Morimoto, T. Sugizaki et al., Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure, J Biol Chem, vol.286, pp.26913-26920, 2011.

M. Watanabe, S. M. Houten, C. Mataki, M. A. Christoffolete, B. W. Kim et al., Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature, vol.439, pp.484-489, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188183

M. D. Weltman, G. C. Farrell, and C. Liddle, Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation, Gastroenterology, vol.111, pp.1645-1653, 1996.

Y. Yu, Y. Liu, A. W. Song, J. Zhang, Y. Zhao et al., STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis, Diet high in fat (60%), cholesterol (1.25%), and cholic acid (0.5%) along with 2% hydroxypropyl-?-cyclodextrin in drinking water (HFCC-CDX diet) for 1 wk induces liver steatosis, oxidative stress, and inflammation, vol.129, pp.546-555, 2019.

, A) Liver weight. B) Representative photographs of macroscopic liver aspect, Oil Red O, hematoxylin and eosin (H&E), and Sirius Red staining in mice fed a HFCC-CDX or chow diet (CD) for 1 wk (magnification x20). White circles indicate the mononuclear-cell infiltrate (inflammation). C)

F. Tbars, G) Expression of proinflammatory genes [interleukin-1? (IL1?), tumor-necrosis factor ? (TNF ?), monocyte chemoattractant protein 1 (MCP1), and F4/80] and profibrotic genes [collagen type 1?1 (Col1?1), ?-smooth muscle actin (?SMA), transforming growth factor ? (TGF?), and tissue inhibitor of metalloproteinase 1 (Timp1)] in liver. Open circles: CD; closed circles: HFCC-CDX diet. Results are presented as the mean SE, and the statistical significance of differences was determined with the Student's t test. *P > 0.05, ?P >0.01, and F4/80 and profibrotic genes collagen type 1?1 (Col1?1), ?-smooth muscle actin (?SMA), transforming growth factor ? (TGF?), and tissue inhibitor of metalloproteinase 1 (Timp1). White circles: CD; black circles: HFCC-CDX diet; gray circles: HFCC-CDX Lira. Results are presented as the mean SE, and the statistical significance of differences was determined with the Student's t test or with one-way analysis of variance followed by Bonferroni's post hoc test, Nonalcoholic fatty liver disease (NAFLD) activity score for mice fed HFCC-CDX. D-F) Assessment of hepatic triglycerides, cholesterol, and non-esterified fatty acids (NEFAs) (D), reactive oxygen species (ROS, E), and thiobarbituric acid response substrates

, HFCC-CDX-fed mice were treated daily with liraglutide or vehicle for the last 2 wk of the study, n >10 mice per group

, Liraglutide treatment normalizes both plasma lipid levels and systemic inflammation and improves insulin sensitivity, Figure, vol.4

, A) Plasma triglycerides and cholesterol levels. B) Plasma alanine (ALT) and aspartate (AST) levels

, D) Index of systemic inflammation. AU, arbitrary units. E) Blood glucose evolution after oral glucose loading (OGTT) in overnight-fasted mice. F) OGTT-associated basal and stimulated insulinemia values in overnight-fasted mice. G) Representative Western blot of total and phosphorylated Akt (P-Akt) levels in the liver of mice after portal insulin injection. Data are expressed as the percentage of (P-Akt) to total Akt. White circles: chow diet (CD), C) Plasma concentrations of the inflammatory cytokines interleukin-6 (IL6), interleukin-10 (IL10), monocyte chemoattractant protein 1 (MCP1), and tumor-necrosis factor ? (TNF?)

H. Lira, Results are presented as the mean SE, and the statistical significance of differences were determined with one-way analysis of variance followed by Bonferroni's post hoc test. *P >0.05, ?P > 0.01, ?P > 0.001; ns, not significant. All data were obtained with 8-wk-old mice fed the CD or HFCC-CDX diet for 3 wk. HFCC-CDX-fed mice were treated daily with liraglutide (HFCC-CDX-Lira) or vehicle (HFCC-CDX), HFCC-CDX with liraglutide