C. H. Hawkes, D. Tredici, K. Braak, and H. , A timeline for Parkinson's disease, Parkinsonism Relat Disord, vol.16, issue.2, pp.79-84, 2010.

H. Braak, D. Tredici, K. Rüb, U. De-vos, R. A. et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol Aging, vol.24, pp.197-211, 2003.

E. C. Hirsch, Why are nigral catecholaminergic neurons more vulnerable than other cells in Parkinson's disease?, Ann Neurol, vol.32, pp.88-93, 1992.

J. A. Obeso, M. C. Rodriguez-oroz, C. G. Goetz, C. Marin, J. H. Kordower et al., Missing pieces in the Parkinson's disease puzzle, Nat Med, vol.16, pp.653-61, 2010.

L. Volpicelli-daley and P. Brundin, Prion-like propagation of pathology in Parkinson disease, Handb Clin Neurol, vol.153, pp.321-335, 2018.

P. P. Michel, E. C. Hirsch, and S. Hunot, Understanding Dopaminergic Cell Death Pathways in Parkinson Disease, Neuron, vol.90, issue.4, pp.675-91, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01348875

E. C. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: a target for neuroprotection?, Lancet Neurol, vol.8, pp.382-97, 2009.

P. Mcgeer, S. Itagaki, B. E. Boyes, and E. G. Mcgeer, Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains, Neurology, vol.38, issue.8, pp.1285-91, 1988.

V. Brochard, B. Combadière, and A. Prigent, Brain infiltration of CD4 lymphocytes contributes to neurodegeneration in Parkinson's disease model, J Clin Invest, vol.119, pp.182-92, 2008.

T. Nagatsu, M. Mogi, H. Ichinose, and A. Togari, Changes in cytokines and neurotrophins in Parkinson's disease, J Neural Trans, issue.60, pp.277-290, 2000.

Y. Ouchi, E. Yoshikawa, Y. Sekine, M. Futatsubashi, T. Kanno et al., Microglial activation and dopamine terminal loss in early Parkinson's disease

, Ann Neurol, vol.57, issue.2, pp.168-75, 2005.

A. Gerhard, N. Pavese, G. Hotton, F. Turkheimer, M. Es et al., In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson's disease, Neurobiol Dis, vol.21, issue.2, pp.404-416, 2006.

T. Terada, M. Yokokura, E. Yoshikawa, M. Futatsubashi, S. Kono et al., Extrastriatal spreading of microglial activation in Parkinson's disease: a positron emission tomography study, Ann Nucl Med, vol.30, issue.8, pp.579-87, 2016.

E. Kusel, V. I. Collura, R. Roberts, J. Griffith, A. Samii et al., Common genetic variation in the HLA region is associated with late-onset sporadic Parkinson's disease, Nat Genet, vol.42, pp.781-786, 2010.

M. A. Nalls, V. Plagnol, D. G. Hernandez, M. Sharma, U. M. Sheerin et al., Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson's disease, FASEB J, vol.377, pp.500-502, 2003.

W. T. Wissemann, E. M. Hill-burns, C. P. Zabetian, S. A. Factor, N. Patsopoulos et al., Association of Parkinson disease with structural and regulatory variants in the HLA region, Am J Hum Genet, vol.93, issue.5, pp.984-93, 2013.

G. T. Kannarkat, D. A. Cook, J. K. Lee, J. Chang, J. Chung et al., Common Genetic Variant Association with Altered HLA Expression, Synergy with Pyrethroid Exposure, and Risk for Parkinson's Disease: An Observational and Case-Control Study, NPJ Parkinsons Dis, vol.1, p.15002, 2015.

P. Holmans, V. Moskvina, L. Jones, M. Sharma, . Parkinson's-disease-genomics-consortium et al., A pathway-based analysis provides additional support for an immunerelated genetic susceptibility to Parkinson's disease, Hum Mol Genet, vol.22, issue.5, pp.1039-1088, 2013.

M. Zhang, H. Mu, Z. Shang, K. Kang, H. Lv et al., Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease, Neuroscience, vol.340, pp.398-410, 2017.

S. A. Gagliano, J. G. Pouget, J. Hardy, J. Knight, M. R. Barnes et al., Genomics implicates adaptive and innate immunity in Alzheimer's and Parkinson's diseases, Ann Clin Transl Neurol, vol.3, issue.12, pp.924-933, 2016.

T. Raj, K. Rothamel, S. Mostafavi, C. Ye, M. N. Lee et al., Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes, Science, vol.344, issue.6183, pp.519-542, 2014.

M. E. Johnson, B. Stecher, V. Labrie, L. Brundin, P. Brundin et al., Redefining Parkinson's Disease Pathogenesis, Trends Neurosci, vol.42, issue.1, pp.4-13, 2019.

X. Y. Qin, S. P. Zhang, C. Cao, Y. P. Loh, and Y. Cheng, Aberrations in Peripheral Inflammatory Cytokine Levels in Parkinson Disease: A Systematic Review and Meta-analysis, JAMA Neurol, vol.73, issue.11, pp.1316-1324, 2016.

W. Wijeyekoon, R. Yarnall, A. Lawson, R. Breen, D. Evans et al.,

. Icicle-pd and . Group, Serum immune markers and disease progression in an incident Parkinson's disease cohort (ICICLE-PD), Mov Disord, 2016.

D. Blum-degen, T. Muller, W. Kuhn, M. Gerlach, H. Przuntek et al., Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients, Neurosci Lett, vol.202, pp.17-20, 1995.

M. Mogi, M. Harada, H. Narabayashi, H. Inagaki, M. Minami et al., Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factoralpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson's disease, Neurosci Lett, vol.211, pp.13-16, 1996.

M. Mogi, M. Harada, T. Kondo, H. Narabayashi, P. Riederer et al., Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson's disease, Neurosci Lett, vol.193, pp.129-132, 1995.

D. Lindqvist, S. Hall, Y. Surova, H. M. Nielsen, S. Janelidze et al., Cerebrospinal fluid inflammatory markers in Parkinson's disease--associations with depression, fatigue, and cognitive impairment, Brain Behav Immun, vol.33, pp.183-189, 2013.

S. J. Gardai, W. Mao, B. Schüle, M. Babcock, S. Schoebel et al., Elevated alpha-synuclein impairs innate immune cell function and provides a potential peripheral biomarker for Parkinson's disease. PLoS One, vol.8, p.71634, 2013.

L. M. Chahine, J. Qiang, E. Ashbridge, J. Minger, D. Yearout et al., Clinical and biochemical differences in patients having Parkinson disease with vs without GBA mutations, JAMA Neurol, 2013.

V. Grozdanov, C. Bliederhaeuser, W. P. Ruf, V. Roth, K. Fundel-clemens et al., Inflammatory dysregulation of blood monocytes in Parkinson's disease patients, Acta Neuropathol, vol.128, issue.5, pp.651-63, 2014.

J. A. Saunders, K. A. Estes, L. M. Kosloski, H. E. Allen, K. M. Dempsey et al., CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson's disease, J Neuroimmune Pharmacol, vol.7, issue.4, pp.927-965, 2012.

D. Sulzer, R. N. Alcalay, F. Garretti, L. Cote, E. Kanter et al., Lindestam Arlehamn CS, Sette A. T cells from patients with Parkinson's disease recognize ?-synuclein peptides, Nature, vol.546, issue.7660, pp.656-661, 2017.

C. S. Lindestam-arlehamn, R. Dhanwani, J. Pham, R. Kuan, A. Frazier et al., ?-Synuclein-specific T cell reactivity is associated with preclinical and early Parkinson's disease, Nature Comm, 2020.

A. L. Bartels, A. T. Willemsen, J. Doorduin, E. F. De-vries, R. A. Dierckx et al., PET: quantification of neuroinflammation and a monitor of antiinflammatory treatment in Parkinson's disease?, Parkinsonism Relat Disord, vol.16, issue.1, pp.57-66, 2010.

C. Ghadery, Y. Koshimori, S. Coakeley, M. Harris, P. Rusjan et al., Microglial activation in Parkinson's disease using [18F]-FEPPA, J Neuroinflammation, vol.14, issue.1, p.8, 2017.

A. G. Horti, R. Naik, C. A. Foss, I. Minn, V. Misheneva et al., PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R), Proc Natl Acad Sci, vol.116, issue.5, pp.1686-1691, 2019.

L. Tomé, C. M. Tyson, T. Rey, N. L. Grathwohl, S. Britschgi et al., Inflammation and ?-synuclein's prion-like behavior in Parkinson's disease--is there a link?, Mol Neurobiol, vol.47, issue.2, pp.561-74, 2013.

J. Seok, H. S. Warren, A. G. Cuenca, M. N. Mindrinos, H. V. Baker et al., Abnormalities of age-related T cell senescence in Parkinson's disease, J Neuroinflammation, vol.15, p.166, 2018.

R. Hunot, S. Herrero, M. T. Parnadeau, S. Corvol, J. C. Lu et al., Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism, Proc Natl Acad Sci U S A, vol.108, pp.6632-6639, 2011.

L. Zecca, H. Wilms, S. Geick, J. H. Claasen, L. O. Brandenburg et al., Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson's disease, Acta Neuropathol, vol.116, pp.47-55, 2008.

C. Noelker, L. Morel, A. Osterloh, D. Alvarez-fischer, T. Lescot et al., Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease, J Neuroinflammation, vol.11, p.86, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00990645

C. Noelker, L. Morel, T. Lescot, A. Osterloh, D. Alvarez-fischer et al., Toll like receptor 4 mediates cell death in a mouse MPTP model of Parkinson disease, Sci Rep, vol.3, p.1393, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01610346

X. Su, K. A. Maguire-zeiss, R. Giuliano, L. Prifti, K. Venkatesh et al., Synuclein activates microglia in a model of Parkinson's disease, Neurobiol Aging, vol.29, issue.11, pp.1690-701, 2008.

A. S. Harms, S. Cao, A. L. Rowse, A. D. Thome, X. Li et al., MHCII is required for ?-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration, J Neurosci, vol.33, issue.23, pp.9592-600, 2013.

A. D. Reynolds, J. G. Glanzer, I. Kadiu, M. Ricardo-dukelow, A. Chaudhuri et al.,

, Nitrated alpha-synuclein-activated microglial profiling for Parkinson's disease, J Neurochem, vol.104, pp.1504-1529, 2008.

A. D. Reynolds, D. K. Stone, R. L. Mosley, and H. E. Gendelman, Nitrated ?-synucleininduced alterations in microglial immunity are regulated by CD4+ T cell subsets, J Immunol, vol.182, pp.4137-4186, 2009.

E. J. Benner, R. Banerjee, A. D. Reynolds, S. Sherman, V. M. Pisarev et al., Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons, PLoS One, vol.3, issue.1, p.1376, 2008.

T. R. Sampson, J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri et al., Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease, Cell, vol.167, issue.6, pp.1469-1480, 2016.

P. Pereira, V. Aho, L. Paulin, E. Pekkonen, P. Auvinen et al., Oral and nasal microbiota in Parkinson's disease, Parkinsonism Relat Disord, vol.38, pp.61-67, 2017.

C. Bliederhaeuser, V. Grozdanov, A. Speidel, L. Zondler, W. P. Ruf et al., Acta Neuropathol, vol.131, issue.3, pp.379-91, 2016.

V. R. Parillaud, G. Lornet, Y. Monnet, A. Privat, A. T. Haddad et al., Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes, J Neuroinflammation, vol.14, p.60, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01493135

V. Calabrese, A. Santoro, D. Monti, R. Crupi, D. Paola et al., Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis, Free Radic Biol Med, vol.115, pp.80-91, 2018.

M. Prinz, J. Priller, S. S. Sisodia, and R. M. Ransohoff, Heterogeneity of CNS myeloid cells and their roles in neurodegeneration, Nat Neurosci, vol.14, issue.10, pp.1227-1262, 2011.

K. Kierdorf, T. Masuda, M. Jordão, and M. Prinz, Macrophages at CNS interfaces: ontogeny and function in health and disease, Nat Rev Neurosci, 2019.

D. C. Wu, V. Jackson-lewis, M. Vila, K. Tieu, P. Teismann et al., Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease, J Neurosci, vol.22, issue.5, pp.1763-71, 2002.

T. Breidert, J. Callebert, M. T. Heneka, G. Landreth, J. M. Launay et al., Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson's disease, J Neurochem, vol.82, issue.3, pp.615-639, 2002.

P. L. Mcgeer, C. Schwab, A. Parent, and D. Doudet, Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration, Ann Neurol, vol.54, issue.5, pp.599-604, 2003.

J. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan et al., Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure, Ann Neurol, 1999.

A. S. Harms, A. D. Thome, Z. Yan, A. M. Schonhoff, G. P. Williams et al., Peripheral monocyte entry is required for alpha-Synuclein induced inflammation and Neurodegeneration in a model of Parkinson disease, Exp Neurol, vol.300, pp.179-187, 2018.

A. Sommer, F. Marxreiter, F. Krach, T. Fadler, J. Grosch et al.,

J. Winkler, I. Prots, and B. Winner, Th17 Lymphocytes Induce Neuronal Cell Death in a Human iPSC-Based Model of Parkinson's Disease, Cell Stem Cell, vol.23, issue.1, pp.123-131, 2018.

M. K. Rasmussen, H. Mestre, and M. Nedergaard, The glymphatic pathway in neurological disorders, Lancet Neurol, vol.17, issue.11, pp.1016-1024, 2018.

D. Valdinocci, R. A. Radford, S. M. Siow, R. S. Chung, and D. L. Pountney, Potential Modes of Intercellular ?-Synuclein Transmission, Int J Mol Sci, vol.18, issue.2, 2017.

R. Kortekaas, K. L. Leenders, J. C. Van-oostrom, W. Vaalburg, J. Bart et al., Blood-brain barrier dysfunction in parkinsonian midbrain in vivo

, Ann Neurol, vol.57, issue.2, pp.176-185, 2005.

B. A. Faucheux, A. M. Bonnet, Y. Agid, and E. C. Hirsch, Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet, vol.353, pp.981-983, 1999.

C. Barcia, V. Bautista, A. Sánchez-bahillo, E. Fernández-villalba, B. Faucheux et al., Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian, J Neural Transm (Vienna), vol.112, issue.9, pp.1237-1285, 2005.

S. Janelidze, D. Lindqvist, V. Francardo, S. Hall, H. Zetterberg et al.,

, Increased CSF biomarkers of angiogenesis in Parkinson disease, Neurology, vol.85, issue.21, pp.1834-1876, 2015.

K. E. Ohlin, I. Sebastianutto, C. E. Adkins, C. Lundblad, P. R. Lockman et al., Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson's disease, Neuroimage, vol.61, issue.1, pp.228-267, 2012.

S. Mondello, F. Kobeissy, Y. Mechref, J. Zhao, F. R. Talih et al., Novel biomarker signatures for idiopathic REM sleep behavior disorder: A proteomic and system biology approach, Neurology, vol.91, issue.18, pp.1710-1715, 2018.

R. Kim, J. S. Jun, H. J. Kim, K. Y. Jung, Y. W. Shin et al., Peripheral Blood Inflammatory Cytokines in Idiopathic REM Sleep Behavior Disorder, Mov Disord, vol.34, issue.11, pp.1739-1744, 2019.

E. King, J. O'brien, P. Donaghy, C. H. Williams-gray, R. A. Lawson et al.,

, Parkinson's disease, Lewy body disease, and Alzheimer's disease, Int J Geriatr Psychiatry, vol.34, issue.8, pp.1244-1250, 2019.

M. G. Stokholm, A. Iranzo, K. Østergaard, M. Serradell, M. Otto et al., Assessment of neuroinflammation in patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study, Lancet Neurol, vol.16, issue.10, pp.789-796, 2017.

X. Gao, H. Chen, M. A. Schwarzschild, and A. Ascherio, Use of ibuprofen and risk of Parkinson disease, Neurology, vol.76, pp.863-872, 2011.

J. J. Gagne and M. C. Power, Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis, vol.74, pp.995-1002, 2010.

A. Samii, M. Etminan, M. O. Wiens, and S. Jafari, NSAID use and the risk of Parkinson's disease: systematic review and meta-analysis of observational studies, Drugs Aging, vol.26, issue.9, pp.769-79, 2009.

L. Ren, J. Yi, J. Yang, P. Li, X. Cheng et al., Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine (Baltimore), vol.97, p.12172, 2018.

. Ninds-net-pd-investigators, A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease, Neurology, vol.66, issue.5, pp.664-71, 2006.

I. Peter, M. Dubinsky, S. Bressman, A. Park, C. Lu et al., Anti-Tumor Necrosis Factor Therapy and Incidence of Parkinson Disease Among Patients With Inflammatory Bowel Disease, JAMA Neurol, vol.75, issue.8, pp.939-946, 2018.

A. M. Schonhoff, G. P. Williams, Z. D. Wallen, D. G. Standaert, and A. S. Harms, Innate and adaptive immune responses in Parkinson's disease, Progress in Brain Research, 2020.

J. Parkinson, N. Sherwood, P. Jones, and . Row, An essay on the shaking palsy, Etienne Hirsch B. Review and Critique, p.1817

E. Hirsch and D. Standaert,

. Dr, Standaert is a member of the faculty of the University of Alabama at Birmingham and is supported by endowment and University funds. Dr. Standaert is an investigator in studies funded by Abbvie

, Alabama Department of Commerce, the Department of Defense, and NIH grants P01NS087997, P50NS108675, R25NS079188, P2CHD086851, P30NS047466, and T32NS095775. He has a clinical practice and is compensated for these activities through the University of Alabama Health Services Foundation, addition, since, 2019.