N. J. Abbott, L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier, Nat Rev Neurosci, vol.7, pp.41-53, 2006.

A. Abrahao, Y. Meng, M. Llinas, Y. Huang, C. Hamani et al., First-in-human trial of blood-brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound, Nat Commun, vol.10, p.4373, 2019.

R. E. Apfel and C. K. Holland, Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound, Ultrasound Med Biol, vol.17, pp.179-185, 1991.

R. Bekeredjian, R. D. Kroll, E. Fein, S. Tinkov, C. Coester et al., Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas, Ultrasound Med Biol, vol.33, pp.1592-1598, 2007.

J. T. Belcik, B. P. Davidson, A. Xie, M. D. Wu, M. Yadava et al., Augmentation of muscle blood flow by ultrasound cavitation is mediated by ATP and purinergic signaling, Circulation, vol.135, pp.1240-1252, 2017.

J. T. Belcik, B. H. Mott, A. Xie, Y. Zhao, S. Kim et al., Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation, Circ Cardiovasc Imaging, vol.8, 2015.

G. M. Bleeker, N. J. Van-haeringen, E. R. Maas, and E. Glasius, Selective properties of the vitreous barrier, Exp Eye Res, vol.7, pp.37-46, 1968.

C. Boitano, E. Dirksen, and M. Sanderson, Intercellular propagation of calcium waves mediated by inositol trisphosphate, Science, vol.258, pp.292-295, 1992.

M. Braide, H. Rasmussen, A. Albrektsson, and U. Bagge, Microvascular behavior and effects of sonazoid microbubbles in the cremaster muscle of rats after local administration, J. Ultrasound Med, vol.25, pp.885-890, 2006.

A. Carpentier, M. Canney, A. Vignot, V. Reina, K. Beccaria et al., Clinical trial of blood-brain barrier disruption by pulsed ultrasound, Sci Transl Med, vol.8, pp.343-345, 2016.

C. F. Caskey, S. M. Stieger, S. Qin, P. A. Dayton, and K. W. Ferrara, Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall, J Acoust Soc Am, vol.122, pp.1191-1200, 2007.

J. Castle and S. B. Feinstein, Drug and gene delivery using sonoporation for cardiovascular disease, Adv Exp Med Biol, vol.880, pp.331-338, 2016.

W. Y. Chai, P. C. Chu, C. H. Tsai, C. Y. Lin, H. W. Yang et al., Image-guided focused-ultrasound CNS molecular delivery: An implementation via dynamic contrast-enhanced magnetic-resonance imaging, Sci Rep, vol.8, p.4151, 2018.

H. Chen, A. A. Brayman, A. P. Evan, and T. J. Matula, Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects, Ultrasound Med Biol, vol.38, pp.2151-2162, 2012.

H. Chen, A. A. Brayman, W. Kreider, M. R. Bailey, and T. J. Matula, Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels, Ultrasound Med Biol, vol.37, pp.2139-2148, 2011.

H. Chen, A. A. Brayman, and T. J. Matula, Characteristic microvessel relaxation timescales associated with ultrasound-activated microbubbles, Appl Phys Lett, vol.101, p.163704, 2012.

Q. Chen, Q. Wang, J. Zhu, Q. Xiao, and L. Zhang, Reactive oxygen species: Key regulators in vascular health and diseases, Br J Pharmacol, vol.175, pp.1279-1292, 2018.

Y. C. Cheng, Biology and regulation of blood-tissue barriers, 2013.

B. Chertok and R. Langer, Circulating magnetic microbubbles for localized real-time control of drug delivery by ultrasonography-guided magnetic targeting and ultrasound, Theranostics, vol.8, pp.341-357, 2018.

J. P. Christiansen, B. A. French, A. L. Klibanov, S. Kaul, and J. R. , Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles, Ultrasound Med Biol, vol.29, pp.1759-1767, 2003.

L. Cucullo, N. Marchi, M. Marroni, V. Fazio, S. Namura et al., Blood-brain barrier damage induces release of alpha2-macroglobulin, Mol Cell Proteomics, vol.2, pp.234-241, 2003.

J. G. Cunha-vaz, The blood-retinal barriers system. Basic concepts and clinical evaluation, Exp Eye Res, vol.78, pp.715-721, 2004.

J. Deng, Q. Huang, F. Wang, Y. Liu, Z. Wang et al., The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles, J Mol Neurosci, vol.46, pp.677-687, 2012.

L. Di and E. H. Kerns, Blood-brain barrier in drug discovery: Optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs, 2015.

C. F. Dietrich, M. Averkiou, M. B. Nielsen, R. G. Barr, P. N. Burns et al., How to perform contrast-enhanced ultrasound (CEUS), Ultrasound Int Open, vol.4, pp.2-15, 2018.

G. Dimcevski, S. Kotopoulis, T. Bjanes, D. Hoem, J. Schjott et al., A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer, J Control Release, vol.243, pp.172-181, 2016.

A. A. Doinikov and A. Bouakaz, Acoustic microstreaming around a gas bubble, J Acoust Soc Am, vol.127, pp.703-709, 2010.

A. A. Doinikov and A. Bouakaz, Theoretical investigation of shear stress generated by a contrast microbubble on the cell membrane as a mechanism of sonoporation, J Acoust Soc Am, vol.128, pp.11-19, 2010.

D. B. Erlichman, A. Weiss, M. Koenigsberg, and M. W. Stein, Contrast enhanced ultrasound: A review of radiology applications, Clin Imaging, vol.60, pp.209-215, 2019.

J. M. Escoffre and A. Bouakaz, Therapeutic ultrasound, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02439296

J. M. Escoffre and A. Bouakaz, Mini-review-Biophysical mechanisms of cell membrane sonopermeabilization: Knowns and unknowns, Langmuir, vol.35, pp.10151-10165, 2019.

P. G. Frank, S. E. Woodman, D. S. Park, and M. P. Lisanti, Caveolin, caveolae, and endothelial cell function, Arterioscler Thromb Vasc Biol, vol.23, pp.1161-1168, 2003.

Y. Gao, S. Gao, B. Zhao, Y. Zhao, X. Hua et al., Vascular effects of microbubble-enhanced, pulsed, focused ultrasound on liver blood perfusion, Ultrasound Med Biol, vol.38, pp.91-98, 2012.

N. Guvener, L. Appold, F. De-lorenzi, S. K. Golombek, L. Y. Rizzo et al., Recent advances in ultrasound-based diagnosis and therapy with micro-and nanometer-sized formulations, Methods, vol.130, pp.4-13, 2017.

D. M. Hallow, A. D. Mahajan, and M. R. Prausnitz, Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries, J Control Release, vol.118, pp.285-293, 2007.

B. Helfield, X. Chen, S. C. Watkins, and F. S. Villanueva, Biophysical insight into mechanisms of sonoporation, Proc Natl Acad Sci, vol.113, pp.9983-9989, 2016.

X. Hu, A. Kheirolomoom, L. M. Mahakian, J. R. Beegle, D. E. Kruse et al., Insonation of targeted microbubbles produces regions of reduced blood flow within tumor vasculature, Invest Radiol, vol.47, pp.398-405, 2012.

J. H. Hwang, A. A. Brayman, M. A. Reidy, T. J. Matula, M. B. Kimmey et al., Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo, Ultrasound Med Biol, vol.31, pp.553-564, 2005.

J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, Correlation between inertial cavitation dose and endothelial cell damage in vivo, Ultrasound Med Biol, vol.32, pp.1611-1619, 2006.

J. F. Jordão, E. Th-evenot, K. Markham-coultes, T. Scarcelli, Y. Q. Weng et al., Amyloid-b plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound, Exp Neurol, vol.248, pp.16-29, 2013.

E. K. Juang, D. Cock, I. Keravnou, C. Gallagher, M. K. Keller et al., Engineered 3D microvascular networks for the study of ultrasound-microbubble-mediated drug delivery, vol.35, pp.10128-10138, 2019.

L. Juffermans, O. Kamp, P. A. Dijkmans, C. A. Visser, and R. J. Musters, Lowintensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels, Ultrasound Med Biol, vol.34, pp.502-508, 2008.

L. Juffermans, B. Meijering, R. H. Henning, and L. E. Deelman, Ultrasound and microbubble-targeted delivery of small interfering RNA into primary endothelial cells is more effective than delivery of plasmid DNA, Ultrasound Med Biol, vol.40, pp.532-540, 2014.

L. Juffermans, A. Van-dijk, C. Jongenelen, B. Drukarch, A. Reijerkerk et al., Ultrasound and microbubble-induced intra-and intercellular bioeffects in primary endothelial cells, Ultrasound Med Biol, vol.35, pp.1917-1927, 2009.

C. P. Keravnou, D. Cock, I. Lentacker, I. Izamis, M. L. Averkiou et al., Microvascular injury and perfusion changes induced by ultrasound and microbubbles in a machine-perfused pig liver, Ultrasound Med Biol, vol.42, pp.2676-2686, 2016.

T. Kodama, Y. Tomita, K. Koshiyama, and M. J. Blomley, Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble, Ultrasound Med Biol, vol.32, pp.905-914, 2006.

J. Kolosnjaj-tabi, L. Gibot, I. Fourquaux, M. Golzio, and M. P. Rols, Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects, Adv Drug Deliv Rev, vol.138, pp.56-67, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02169402

Y. Kono, G. C. Steinbach, T. Peterson, G. W. Schmid-schonbein, and R. F. Mattrey, Mechanism of parenchymal enhancement of the liver with a microbubble-based US contrast medium: An intravital microscopy study in rats, Radiology, vol.224, pp.253-257, 2002.

K. Kooiman, M. Emmer, M. Foppen-harteveld, A. Van-wamel, and N. De-jong, Increasing the endothelial layer permeability through ultrasound-activated microbubbles, IEEE Trans Biomed Eng, vol.57, pp.29-32, 2010.

K. Kooiman, M. Foppen-harteveld, A. Van-deer-steen, and N. De-jong, Sonoporation of endothelial cells by vibrating targeted microbubbles, J Control Release, vol.154, pp.35-41, 2011.

K. Kooiman, A. F. Van-der-steen, and N. De-jong, Role of intracellular calcium and reactive oxygen species in microbubble-mediated alterations of endothelial layer permeability, IEEE Trans Ultrason Ferroelectr Freq Control, vol.60, pp.1811-1815, 2013.

K. Kooiman, H. J. Vos, M. Versluis, and N. De-jong, Acoustic behavior of microbubbles and implications for drug delivery, Adv Drug Deliv Rev, vol.72, pp.28-48, 2014.

S. Kotopoulis, G. Dimcevski, O. H. Gilja, D. Hoem, and M. Postema, Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study, Med Phys, vol.40, p.72902, 2013.

L. Kou, Y. D. Bhutia, Q. Yao, Z. He, J. Sun et al., Transporterguided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types, Front Pharmacol, vol.9, p.27, 2018.

N. Kudo, K. Okada, and K. Yamamoto, Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells, Biophys J, vol.96, pp.4866-4876, 2009.

O. M. Kutova, E. L. Guryev, E. A. Sokolova, R. Alzeibak, and I. V. Balalaeva, Targeted delivery to tumors: Multidirectional strategies to improve treatment efficiency, Cancer (Basel), vol.11, p.68, 2019.

B. H. Lammertink, C. Bos, R. Deckers, G. Storm, C. T. Moonen et al., Sonochemotherapy: From bench to bedside, Front Pharmacol, vol.6, p.138, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438239

G. Leinenga and J. G?, Scanning ultrasound removes amyloid-b and restores memory in an Alzheimer's disease mouse model, Sci Transl Med, vol.7, pp.278-311, 2015.

S. L-elu, M. Afadzi, S. Berg, A. Aslund, S. H. Torp et al., Primary porcine brain endothelial cells as in vitro model to study effects of ultrasound and microbubbles on blood-brain barrier function, IEEE Trans Ultrason Ferroelectr Freq Control, vol.64, pp.281-290, 2017.

K. S. Leung, X. Chen, W. Zhong, A. C. Yu, and C. Y. Lee, Microbubble-mediated sonoporation amplified lipid peroxidation of Jurkat cells, Chem Phys Lipids, vol.180, pp.53-60, 2014.

T. Li, G. Liu, J. Li, X. Wang, Q. Liu et al., Mechanisms of prostate permeability triggered by microbubble-mediated acoustic cavitation, Cell Biochem Biophys, vol.64, pp.147-153, 2012.

C. Y. Lin, H. C. Tseng, H. R. Shiu, M. F. Wu, C. Y. Chou et al., Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug, Int J Nanomedicine, vol.7, pp.2143-2152, 2012.

Y. Liu, S. Yi, J. Zhang, Z. Fang, F. Zhou et al., Effect of microbubble-enhanced ultrasound on prostate permeability: A potential therapeutic method for prostate disease, Urology, vol.81, pp.921-922, 2013.

T. Mainprize, N. Lipsman, Y. Huang, Y. Meng, A. Bethune et al., Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: A clinical safety and feasibility study, Sci Rep, vol.9, p.321, 2019.

B. Marty, B. Larrat, M. Van-landeghem, C. Robic, P. Robert et al., Dynamic study of blood-brain barrier closure after its disruption using ultrasound: A quantitative analysis, J Cereb Blood Flow Metab, vol.32, pp.1948-1958, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00739117

O. R. Mason, B. P. Davidson, P. Sheeran, M. Muller, J. M. Hodovan et al., Augmentation of tissue perfusion in patients with peripheral artery disease using microbubble cavitation, JACC Cardiovasc Imaging, vol.13, pp.641-651, 2020.

D. Mcmahon, R. Bendayan, and K. Hynynen, Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome, Sci Rep, vol.7, p.45657, 2017.

B. Meijering, R. H. Henning, W. H. Van-gilst, I. Gavrilovic, A. Van-wamel et al., Optimization of ultrasound and microbubbles targeted gene delivery to cultured primary endothelial cells, J. Drug Target, vol.15, pp.664-671, 2007.

B. Meijering, L. Juffermans, A. Van-wamel, R. H. Henning, I. S. Zuhorn et al., Ultrasound and microbubble-targeted delivery of macromecules is regulated by induction of endocytosis and pore formation, Circ Res, vol.104, pp.679-687, 2009.

U. Nixdorff, A. Schmidt, T. Morant, N. Stilianakis, J. U. Voigt et al., Dose-dependent disintegration of human endothelial monolayers by contrast echocardiography, Life Sciences, vol.77, pp.1493-1501, 2005.

C. D. Ohl, M. Arora, R. Ikink, N. De-jong, M. Versluis et al., Sonoporation from jetting cavitation bubbles, Biophys J, vol.91, pp.4285-4295, 2006.

Y. Osipchuk and M. Cahalan, Cell-to-cell spread of calcium spreads mediated ATP receptors in mast cells, Nature, vol.359, pp.241-244, 1992.

V. Paefgen, D. Doleschel, and F. Kiessling, Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery, Front Pharmacol, vol.6, p.197, 2015.

J. Park, Z. Fan, R. E. Kumon, M. El-sayed, and C. X. Deng, Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation, Ultrasound Med Biol, vol.36, pp.1176-1187, 2010.

J. Park, Y. Zhang, N. Vykhodtseva, J. D. Akula, and N. J. Mcdannold, Targeted and reversible blood-retinal barrier disruption via focused ultrasound and microbubbles, PLoS One, vol.7, p.42754, 2012.

J. Park, F. Zhenzhen, and C. X. Deng, Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells, J Biomech, vol.44, pp.164-169, 2011.

C. Poon, D. Mcmahon, and K. Hynynen, Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound, Neuropharmacology, vol.120, pp.20-37, 2017.

M. Postema, A. Van-wamel, F. J. Cate, and N. De-jong, High-speed photography during ultrasound illustrates potential therapeutic applications of microbubbles, Med Phys, vol.32, pp.3707-3711, 2005.

P. M. Price, W. E. Mahmoud, A. A. Al-ghamdi, and L. M. Bronstein, Magnetic drug delivery: Where the field is going, Front Chem, vol.6, p.619, 2018.

R. J. Price, D. A. Skyba, S. Kaul, and T. C. Skalak, Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbbubble destruction with ultrasound, Circulation, vol.98, pp.1264-1267, 1998.

J. Qin, T. Y. Wang, and J. K. Willmann, Sonoporation: Applications for cancer therapy, Adv Exp Med Biol, vol.880, pp.263-291, 2016.

P. Qin, T. Han, A. Yu, and L. Xu, Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery, J Control Release, vol.272, pp.169-181, 2018.

Y. Qiu, Y. Luo, Y. Zhang, W. Cui, D. Zhang et al., The correlation between acoustic cavitation and sonoporation involved in ultrasound-mediated DNA transfection with polyethylenimine (PEI) in vitro, J Control Release, vol.145, pp.40-48, 2010.

S. B. Raymond, J. Skoch, K. Hynynen, and B. J. Bacskai, Multiphoton imaging of ultrasound/Optison mediated cerebrovascular effects in vivo, J Cereb Blood Flow Metab, vol.27, pp.393-403, 2007.

A. Rix, M. Palmowski, F. Gremse, K. Palmowski, W. Lederle et al., Influence of repetitive contrast agent injections on functional and molecular ultrasound measurements, Ultrasound Med Biol, vol.40, pp.2468-2475, 2014.

S. Roovers, T. Segers, G. Lajoinie, J. Deprez, M. Versluis et al., The role of ultrasound-driven microbubble dynamics in drug delivery: From microbubble fundamentals to clinical translation, Langmuir, vol.35, pp.10173-10191, 2019.

P. G. Sanches, R. Rossin, M. Bohmer, K. Tiemann, and H. Grull, Real-time imaging and kinetics measurements of focused ultrasound-induced extravasation in skeletal muscle using SPECT/CT, J Control Release, vol.168, pp.262-270, 2013.

N. Sasaki, C. Bos, J. M. Escoffre, G. Storm, and C. T. Moonen, Development of a tumor tissue-mimicking model with endothelial cell layer and collagen gel for evaluating drug penetration, Int J Pharmaceutics, vol.482, pp.118-122, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02438274

M. Schneider, A. Broillet, I. Tardy, S. Pochon, P. Bussat et al., Use of intravital microscopy to study the microvascular behavior of microbubble-based ultrasound contrast agents, Microcirculation, vol.19, pp.245-259, 2012.

C. M. Sena, A. Leandro, A. Azul, R. Seiça, and G. Perry, Vascular oxidative stress: Impact and therapeutic approaches, Front Physiol, vol.9, p.1668, 2018.

C. A. Sennoga, E. Kanbar, L. Auboire, P. A. Dujardin, D. Fouan et al., Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring, Expert Opin Drug Deliv, vol.14, pp.1031-1043, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02438187

L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood et al., Advances and challenges of liposome assisted drug delivery, Front Pharmacol, vol.6, p.286, 2015.

F. E. Shamout, A. N. Pouliopoulos, P. Lee, S. Bonaccorsi, L. Towhidi et al., Enhancement of non-invasive trans-membrane drug delivery using ultrasound and microbubbles during physiologically relevant flow, Ultrasound Med Biol, vol.41, pp.2335-2448, 2015.

N. Sheikov, N. Mcdannold, F. Jolesz, Y. Z. Zhang, K. Tam et al., Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles, Ultrasound Med Biol, vol.30, pp.979-989, 2004.

N. Sheikov, N. Mcdannold, F. Jolesz, Y. Z. Zhang, K. Tam et al., Brain arterioles show more active vesicular transport of bloodborne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier, Ultrasound Med Biol, vol.32, pp.1399-1409, 2006.

N. Sheikov, N. Mcdannold, S. Sharma, and K. Hynynen, Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium, Med Biol, vol.34, pp.1039-1104, 2008.

I. Skachkov, Y. Luan, A. F. Van-der-steen, N. De-jong, and K. Kooiman, Targeted microbubble mediated sonoporation of endothelial cells in vivo, IEEE Trans Ultrason Ferroelectr Freq Control, vol.61, pp.1661-1667, 2014.

J. Song, J. C. Chappell, M. Qi, E. J. Vangieson, S. Kaul et al., Influence of injection site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of microspheres to muscle, J Am Coll Cardiol, vol.39, pp.726-731, 2002.

S. M. Stieger, C. F. Caskey, R. H. Adamson, S. Qin, F. R. Curry et al., Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model, Radiology, vol.243, pp.112-121, 2007.

R. Suzuki and A. L. Klibanov, Co-administration of microbubbles and drugs in ultrasound-assisted drug delivery: Comparison with drug-carrying particles, Adv Exp Med Biol, vol.880, pp.205-220, 2016.

A. Szade, A. Grochot-przeczek, U. Florczyk, A. Jozkowicz, and J. Dulak, Cellular and molecular mechanisms of inflammation-induced angiogenesis, IUBMB Life, vol.67, pp.145-159, 2015.

T. A. Tran, L. Guennec, J. Y. Bougnoux, P. Tranquart, F. Bouakaz et al., Characterization of cell membrane response to ultrasound activated microbubbles, IEEE Trans Ultrason Ferroelectr Freq Control, vol.55, pp.43-44, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01822233

T. A. Tran, S. Roger, L. Guennec, J. Y. Tranquart, F. Bouakaz et al., Effect of ultrasound-activated microbubbles on the cell electrophysiological properties, Ultrasound Med Biol, vol.33, pp.158-163, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141873

T. Van-rooij, I. Skachkov, I. Beekers, K. R. Lattwein, J. D. Voorneveld et al., Viability of endothelial cells after ultrasound-mediated sonoporation: Influence of targeting, oscillation, and displacement of microbubbles, J Control Release, vol.238, pp.197-211, 2016.

A. Van-wamel, A. Bouakaz, M. Versluis, and N. De-jong, Micromanipulation of endothelial cells: Ultrasound-microbubble-cell interaction, Ultrasound Med Biol, vol.30, pp.1255-1258, 2004.

A. Van-wamel, K. Kooiman, M. Harteveld, M. Emmer, F. J. Ten-cate et al., Vibrating microbubbles poking individual cells: Drug transfer into cells via sonoporation, J Control Release, vol.112, pp.149-155, 2006.

E. Vanbavel, Effects of shear stress on endothelial cells: Possible relevance for ultrasound applications, Prog Biophys Mol Biol, vol.93, pp.374-383, 2007.

D. Virgintino, D. Robertson, M. Errede, V. Benagiano, U. Tauer et al., Expression of caveolin-1 in human brain microvessels, Neuroscience, vol.115, pp.145-152, 2002.

D. H. Wei, X. L. Zhang, R. Wang, J. F. Zeng, K. Zhang et al., Oxidized lipoprotein(a) increases endothelial cell monolayer permeability via ROS generation, Lipids, vol.48, pp.579-586, 2013.

R. A. Weinberg, The biology of cancer, Garland Science, 2014.

J. Wong-ekkabut, Z. Xu, W. Triampo, I. M. Tang, D. P. Tieleman et al., Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dyanmics study, Biophys J, vol.93, pp.4225-4236, 2007.

S. C. Wood, A. S. Brown, R. P. Chen, J. Gordon, E. A. Hitchins et al., Effects of ultrasound and ultrasound contrast agent on vascular tissue, Cardiovasc Ultrasound, vol.10, p.29, 2012.

J. Wu, Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells, Ultrasound Med Biol, vol.28, pp.125-129, 2002.

J. Wu and W. L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells, Adv Drug Deliv Rev, vol.60, pp.1103-1116, 2008.

C. Y. Xia, Z. Zhang, Y. X. Xue, P. Wang, and Y. H. Liu, Mechanisms of the increase in the permeability of the bloodÀtumor barrier obtained by combining low-frequency ultrasound irradiation with smalldose bradykinin, J Neurooncol, vol.94, pp.41-50, 2009.

E. C. Yusko and C. L. Asbury, Force is a signal that cells cannot ignore, Mol Biol Cell, vol.25, pp.3717-3725, 2017.