, Intergroupe Francophone du Myélome, Action Cancer 44 and the SIRIC ILIAD, INCa-DGOS-Inserm_12558

I. Crcina, ;. C. Cnrs, P. G. , M. A. , C. K. et al., Development of methodology: L.M. Acquisition of data (provided patient samples, managed patient sample analysis, Unité d'Investigation Clinique, vol.1, pp.517-531, 2011.

A. J. Souers, ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets, Nat. Med, vol.19, pp.202-208, 2013.

A. Kotschy, The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models, Nature, vol.538, pp.477-482, 2016.

S. Caenepeel, AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies, Cancer Discov, vol.8, pp.1582-1597, 2018.

A. E. Tron, Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia, Nat. Commun, vol.9, p.5341, 2018.

C. Touzeau, The Bcl-2 specific BH3-mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma, Leukemia, vol.28, pp.210-212, 2014.

S. Kumar, Efficacy of venetoclax as targeted therapy for relapsed/ refractory t(11;14) multiple myeloma, Blood, vol.130, pp.2401-2409, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631468

J. N. Gong, Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1, Blood, vol.128, pp.1834-1844, 2016.

P. Gomez-bougie, BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment, Blood, vol.132, pp.2256-2269, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01900681

B. Tessoulin, Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways, J. Hematol. Oncol, vol.11, p.137, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01958772

P. D. Bhola, Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia, J. Clin. Invest, vol.126, pp.3827-3836, 2016.

L. Bodet, ABT-737 is highly effective against molecular subgroups of multiple myeloma, Blood, vol.118, pp.3901-3910, 2011.

J. D. Leverson, Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy, Sci. Transl. Med, vol.7, pp.279-319, 2015.

C. Touzeau, BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3-mimetics, Leukemia, vol.30, pp.761-764, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01411102

C. Touzeau, Deep and sustained response after venetoclax therapy in a patient with very advanced refractory myeloma with translocation t(11;14), Haematologica, vol.102, pp.112-114, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01445538

D. Swan, Successful venetoclax salvage in the setting of refractory, dialysis-dependent multiple myeloma with t(11.14), Haematologica, vol.105, pp.141-143, 2020.

S. M. Matulis, Functional profiling of venetoclax sensitivity can predict clinical response in multiple myeloma, Leukemia, vol.33, pp.1291-1296, 2019.

A. Slomp, Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting, Blood Adv, vol.3, pp.4202-4214, 2019.

E. M. Algarin, Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma, Haematologica, vol.105, pp.116-120, 2019.

K. T. Siu, BCL2 blockade overcomes MCL1 resistance in multiple myeloma, Leukemia, vol.33, pp.2098-2102, 2019.

P. Blombery, Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive Chronic Lymphocytic Leukemia, Cancer Discov, vol.3, pp.342-353, 2019.

H. E. Ramsey, A novel MCL1 inhibitor combined with venetoclax rescues venetoclax-resistant acute myelogenous leukemia, Cancer Discov, vol.8, pp.1566-1581, 2018.

D. M. Moujalled, Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia, Leukemia, vol.33, pp.905-917, 2019.

R. Sundararajan, A. Cuconati, D. Nelson, and E. White, Tumor necrosis factoralpha induces Bax-Bak interaction and apoptosis, which is inhibited by adenovirus E1B 19K, J. Biol. Chem, vol.276, pp.45120-45127, 2001.

J. Debernardi, Differential role of FL-BID and t-BID during verotoxin-1-induced apoptosis in Burkitt's lymphoma cells, Oncogene, vol.37, pp.2410-2421, 2018.

S. B. Ma, Bax targets mitochondria by distinct mechanisms before or during apoptotic cell death: a requirement for VDAC2 or Bak for efficient Bax apoptotic function, Cell Death Differ, vol.21, pp.1925-1935, 2014.

S. Maiga, A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines, Cytom. A, vol.87, pp.285-288, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02100586

C. Kervoelen, Dexamethasone-induced cell death is restricted to specific molecular subgroups of multiple myeloma, Oncotarget, vol.6, pp.26922-26934, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01817581

M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, NbClust: an R package for determining the relevant number of clusters in a data set, J. Stat. Softw, vol.61, p.6, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01126479

P. Gomez-bougie, Melphalan-induced apoptosis in multiple myeloma cells is associated with a cleavage of Mcl-1 and Bim and a decrease in the Mcl-1/Bim complex, Oncogene, vol.24, pp.8076-8089, 2005.

S. Kilens, Parallel derivation of isogenic human primed and naive induced pluripotent stem cells, Nat. Commun, vol.9, p.360, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01758726

C. Vuillier, E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death, EMBO Rep, vol.19, pp.234-243, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01669957