J. S. Patton, J. D. Brain, L. A. Davies, J. Fiegel, M. Gumbleton et al., The Particle has Landed-Characterizing the Fate of Inhaled Pharmaceuticals, J. Aerosol Med. Pulm. Drug Deliv, vol.23, 2010.

Q. T. Zhou, S. S. Leung, P. Tang, T. Parumasivam, Z. H. Loh et al., Inhaled formulations and pulmonary drug delivery systems for respiratory infections, Adv. Drug Deliv. Rev, vol.85, pp.83-99, 2015.

E. Fröhlich, A. Mercuri, S. Wu, and S. Salar-behzadi, Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds, Front. Pharm, vol.7, 2016.

D. Ho, B. L. Nichols, K. J. Edgar, X. Murgia, B. Loretz et al., Challenges and strategies in drug delivery systems for treatment of pulmonary infections, Eur. J. Pharm. Biopharm, vol.144, pp.110-124, 2019.

J. E. Hastedt, P. Bäckman, A. R. Clark, W. Doub, A. Hickey et al., Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP Workshop March 16-17th, 2015.

B. Patel, N. Gupta, and F. Ahsan, Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome, Eur. J. Pharm. Biopharm, vol.89, pp.163-174, 2015.

A. V. Gontijo, N. Grégoire, I. Lamarche, P. Gobin, W. Couet et al., Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 2. Colistin, Antimicrob. Agents Chemother, vol.58, pp.3950-3956, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02477510

S. Marchand, P. Gobin, J. Brillault, S. Baptista, C. Adier et al., Aerosol Therapy with Colistin Methanesulfonate: A Biopharmaceutical Issue Illustrated in Rats, Antimicrob. Agents Chemother, vol.54, pp.3702-3707, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02472561

S. Marchand, N. Grégoire, J. Brillault, I. Lamarche, P. Gobin et al., Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 3. Tobramycin, Antimicrob. Agents Chemother, vol.59, pp.6646-6647, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02477997

S. Marchand, N. Grégoire, J. Brillault, I. Lamarche, P. Gobin et al., Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats. 4. Aztreonam, Antimicrob. Agents Chemother, vol.60, pp.3196-3198, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02481204

A. V. Gontijo, J. Brillault, N. Grégoire, I. Lamarche, P. Gobin et al., Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 1. Ciprofloxacin, Moxifloxacin, and Grepafloxacin. Antimicrob. Agents Chemother, vol.58, pp.3942-3949, 2014.

H. Stass, B. Weimann, J. Nagelschmitz, C. Rolinck-werninghaus, and D. Staab, Tolerability and pharmacokinetic properties of ciprofloxacin dry powder for inhalation in patients with cystic fibrosis: A Phase I, randomized, dose-escalation study, Clin. Ther, vol.35, pp.1571-1581, 2013.

H. Stass, J. Nagelschmitz, S. Willmann, H. Delesen, A. Gupta et al., Inhalation of a dry powder ciprofloxacin formulation in healthy subjects: A phase I study, Clin. Drug Investig, vol.33, pp.419-427, 2013.

R. Endermann, H. Labischinski, C. Ladel, and U. Petersen, Treatment of Bacterial Diseases of the Respiratory Organs, 2011.

(. Bethesda and . Md, National Institute of Diabetes and Digestive and Kidney Diseases; 2012-LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, p.20, 2020.

M. C. Gaspar, N. Grégoire, J. J. Sousa, A. A. Pais, I. Lamarche et al., Pulmonary pharmacokinetics of levofloxacin in rats after aerosolization of immediate-release chitosan or sustained-release PLGA microspheres, Eur. J. Pharm. Sci, vol.93, pp.184-191, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02470904

D. J. Serisier, D. Bilton, A. De-soyza, P. J. Thompson, J. Kolbe et al., ORBIT-2 investigators Inhaled, dual release liposomal ciprofloxacin in non-cystic fibrosis bronchiectasis (ORBIT-2): A randomised, double-blind, placebo-controlled trial, Thorax, vol.68, pp.812-817, 2013.

S. N. Nurbaeti, J. Brillault, F. Tewes, and J. Olivier, Sustained-release microparticle dry powders of chloramphenicol palmitate or thiamphenicol palmitate prodrugs for lung delivery as aerosols, Eur. J. Pharm. Sci, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02477590

D. Cipolla, J. Blanchard, and I. Gonda, Development of liposomal ciprofloxacin to treat lung infections, Pharmaceutics, vol.8, issue.6, 2016.

P. J. Mcshane, J. G. Weers, T. E. Tarara, A. Haynes, P. Durbha et al., Ciprofloxacin Dry Powder for Inhalation (ciprofloxacin DPI): Technical design and features of an efficient drug-device combination, Pulm. Pharmacol. Ther, vol.50, pp.72-79, 2018.

N. G. Türeli, A. Torge, J. Juntke, B. C. Schwarz, N. Schneider-daum et al., Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections, Eur. J. Pharm. Biopharm, vol.117, pp.363-371, 2017.

B. Lamy, F. Tewes, D. R. Serrano, I. Lamarche, P. Gobin et al., New aerosol formulation to control ciprofloxacin pulmonary concentration, J. Control, vol.271, pp.118-126, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02379277

F. Tewes, J. Brillault, B. Lamy, P. O'connell, J. Olivier et al., Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection, Mol. Pharm, vol.13, pp.100-112, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01373710

B. Lamy, D. Serrano, P. O'connell, W. Couet, S. Marchand et al., Use of leucine to improve aerodynamic properties of ciprofloxacin-loaded maltose microparticles for inhalation, Eur. J. Pharm. Res, vol.1, pp.2-11, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02493122

D. C. Griffith, M. N. Dudley, M. W. Surber, K. A. Bostian, and O. Rodny, Aerosol Fluoroquinolone Formulations for Improved Pharmacokinetics, Patent 8815838B2, 2014.

V. Uivarosi, Metal complexes of quinolone antibiotics and their applications: An update, Molecules, vol.18, pp.11153-11197, 2013.

R. W. Frost, K. C. Lasseter, A. J. Noe, E. C. Shamblen, and J. T. Lettieri, Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin, Antimicrob. Agents Chemother, vol.36, pp.830-832, 1992.

M. Kara, B. Hasinoff, D. Mckay, and N. Campbell, Clinical and chemical interactions between iron preparations and ciprofloxacin, Br. J. Clin. Pharmacol, vol.31, pp.257-261, 1991.

S. C. Wallis, B. G. Charles, L. R. Gahan, L. J. Filippich, M. G. Bredhauer et al., Interaction of norfloxacin with divalent and trivalent pharmaceutical cations. In vitro complexation and in vivo pharmacokinetic studies in the dog, J. Pharm. Sci, vol.85, pp.803-809, 1996.

?. Simon, B. Katja, U. Darko, V. Marjan, and K. Albin, Metal cation-fluoroquinolone complexes do not permeate through the intestinal absorption barrier, J. Pharm. Biomed. Anal, vol.53, pp.655-659, 2010.

J. Brillault, F. Tewes, W. Couet, and J. C. Olivier, In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration, Eur. J. Pharm. Sci, vol.97, pp.92-98, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01416565

M. W. Surber, K. A. Bostian, M. N. Dudley, O. Lomovskaya, and D. C. Griffith, Aerosolized Fluoroquinolones and Uses Thereof, 2013.

N. Seedher and P. Agarwal, Effect of metal ions on some pharmacologically relevant interactions involving fluoroquinolone antibiotics, Drug Metab. Drug Interact, vol.25, pp.17-24, 2010.

H. H. Ma, F. C. Chiu, and R. C. Li, Mechanistic Investigation of the Reduction in Antimicrobial Activity of Ciprofloxacin by Metal Cations, Pharm. Res, vol.14, pp.366-370, 1997.

D. Macdonald, L. Cuthbertson, C. Doherty, S. Campana, N. Ravenni et al., Early Pseudomonas aeruginosa infection in individuals with cystic fibrosis: Is susceptibility testing justified?, J. Antimicrob. Chemother, vol.65, pp.2373-2375, 2010.

I. Sibum, P. Hagedoorn, A. H. De-boer, H. W. Frijlink, and F. Grasmeijer, Challenges for pulmonary delivery of high powder doses, Int. J. Pharm, vol.548, pp.325-336, 2018.

J. Stuart-elborn, D. E. Geller, D. Conrad, S. D. Aaron, A. R. Smyth et al., A phase 3, open-label, randomized trial to evaluate the safety and efficacy of levofloxacin inhalation solution (APT-1026) versus tobramycin inhalation solution in stable cystic fibrosis patients, J. Cyst. Fibros, vol.14, pp.507-514, 2015.

D. E. Geller, P. A. Flume, D. C. Griffith, E. Morgan, D. White et al., Pharmacokinetics and Safety of MP-376 (Levofloxacin Inhalation Solution) in Cystic Fibrosis Subjects, Antimicrob. Agents Chemother, vol.55, pp.2636-2640, 2011.

J. S. Loutit, E. E. Morgan, M. N. Dudley, D. C. Griffith, and O. Lomovskaya, Use of aerosolized levofloxacin for treating cystic fibrosis, U.S. Patent 9700564B2, 2017.

D. E. Geller, P. A. Flume, D. Staab, R. Fischer, J. S. Loutit et al., Levofloxacin Inhalation Solution (MP-376) in Patients with Cystic Fibrosis with Pseudomonas aeruginosa, Am. J. Respir. Crit. Care Med, vol.183, pp.1510-1516, 2011.

P. A. Flume, D. R. Vandevanter, E. E. Morgan, M. N. Dudley, J. S. Loutit et al., A phase 3, multi-center, multinational, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of levofloxacin inhalation solution (APT-1026) in stable cystic fibrosis patients, J. Cyst. Fibros, vol.15, pp.495-502, 2016.

C. Stockmann, C. M. Sherwin, K. Ampofo, and M. G. Spigarelli, Development of levofloxacin inhalation solution to treat Pseudomonas aeruginosa in patients with cystic fibrosis, Adv. Respir. Dis, vol.8, pp.13-21, 2014.

M. Dudley, D. Griffith, and O. Rodny, Methods of Treating a Pulmonary Bacterial Infection Using Fluoroquinolones, 2012.

E. European, Medicines Agency: EMA/CHMP/676680/2014-Assessment Report Quinsair, European Medicines Agency, 2014.

M. Sabet, C. E. Miller, T. G. Nolan, K. Senekeo-effenberger, M. N. Dudley et al., Efficacy of Aerosol MP-376, a Levofloxacin Inhalation Solution, in Models of Mouse Lung Infection Due to Pseudomonas aeruginosa, Antimicrob. Agents Chemother, vol.53, pp.3923-3928, 2009.

P. King, O. Lomovskaya, D. C. Griffith, J. L. Burns, and M. N. Dudley, In Vitro Pharmacodynamics of Levofloxacin and Other Aerosolized Antibiotics under Multiple Conditions Relevant to Chronic Pulmonary Infection in Cystic Fibrosis, Antimicrob. Agents Chemother, vol.54, pp.143-148, 2010.

B. G. Torres, R. Awad, S. Marchand, W. Couet, and F. Tewes, In vitro evaluation of Pseudomonas aeruginosa chronic lung infection models: Are agar and calcium-alginate beads interchangeable?, Eur. J. Pharm. Biopharm, vol.143, pp.35-43, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02477575

D. Conrad, P. Flume, L. Sindel, S. Andrews, L. Morgan et al., Phase 2b Study Of Inhaled MP-376 (Aeroquin, Levofloxacin Inhalation Solution) In Stable Cystic Fibrosis (CF) Patients With Chronic Pseudomonas Aeruginosa (PA) Lung Infection. In A102. Advances in Cystic Fibrosis, p.2339, 2010.

. Nhs-england, Clinical Commissioning Policy: Levofloxacin Nebuliser Solution for Chronic Pseudomonas Lung Infection in Cystic Fibrosis, Adults

. Nhs-england, , 2018.

J. S. Elborn, A. Vataire, A. Fukushima, S. Aballea, A. Khemiri et al., Comparison of inhaled antibiotics for the treatment of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: Systematic literature review and network meta-analysis, Clin. Ther, vol.38, pp.2204-2226, 2016.

J. Weers, Inhaled antimicrobial therapy-Barriers to effective treatment, Adv. Drug Deliv. Rev, vol.85, pp.24-43, 2015.

H. A. Tiddens, A. C. Bos, J. W. Mouton, S. Devadason, and H. M. Janssens, Inhaled antibiotics: Dry or wet?, Eur. Respir. J, vol.44, pp.1308-1318, 2014.

F. Tewes, O. L. Gobbo, C. Ehrhardt, and A. M. Healy, Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery, ACS Appl. Mater. Interfaces, vol.8, pp.1164-1175, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02484982

F. Tewes, J. Brillault, and H. Smyth, Inhalable Microparticles Loaded with A Fluoroquinolone/Metal Cation Complex for the Treatment of Respiratory Diseases, Patent WO2018104759A1, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02485017

B. Lamy, Development and Biopharmaceutical Evaluation of Fluoroquinolone-loaded Microparticles for Inhalation, 2018.

K. Hatipoglu, M. Hickey, A. J. Garcia-contreras, and L. , Pharmacokinetics and pharmacodynamics of high doses of inhaled dry powder drugs, Int. J. Pharm, vol.549, pp.306-316, 2018.

T. Bjarnsholt, P. Ø. Jensen, M. J. Fiandaca, J. Pedersen, C. R. Hansen et al., Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients, vol.44, pp.547-558, 2009.

L. Müller, X. Murgia, L. Siebenbürger, C. Börger, K. Schwarzkopf et al., Human airway mucus alters susceptibility of Pseudomonas aeruginosa biofilms to tobramycin, but not colistin, J. Antimicrob. Chemother, vol.73, pp.2762-2769, 2018.

T. F. Bahamondez-canas, H. Zhang, F. Tewes, J. Leal, and H. D. Smyth, PEGylation of tobramycin improves mucus penetration and antimicrobial activity against Pseudomonas aeruginosa biofilms in vitro, Mol. Pharm, vol.15, pp.1643-1652, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02379306

B. Cao, L. Christophersen, M. Kolpen, P. Ø. Jensen, K. Sneppen et al., Diffusion retardation by binding of tobramycin in an alginate biofilm model, PLoS ONE, vol.11, 2016.

F. Tewes, T. F. Bahamondez-canas, and H. D. Smyth, Efficacy of Ciprofloxacin and Its Copper Complex against Pseudomonas aeruginosa Biofilms, Aaps Pharmscitech, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02477817

T. Bahamondez-canas, Drug Delivery Strategies to Treat Pseudomonas aeruginosa Biofilm Infections, 2018.

I. Kukavica-ibrulj and R. C. Levesque, Animal models of chronic lung infection with Pseudomonas aeruginosa: Useful tools for cystic fibrosis studies, Lab. Anim, vol.42, pp.389-412, 2008.

A. Bragonzi, D. Worlitzsch, G. B. Pier, P. Timpert, M. Ulrich et al., Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model, J. Infect. Dis, vol.192, pp.410-419, 2005.

E. J. Growcott, A. Coulthard, R. Amison, E. L. Hardaker, V. Saxena et al., Characterisation of a refined rat model of respiratory infection with Pseudomonas aeruginosa and the effect of ciprofloxacin, J. Cyst. Fibros, vol.10, pp.166-174, 2011.

A. Grillon, F. Schramm, M. Kleinberg, and F. Jehl, Comparative Activity of Ciprofloxacin, Levofloxacin and Moxifloxacin against Klebsiella pneumoniae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia Assessed by Minimum Inhibitory Concentrations and Time-Kill Studies, PLoS ONE, vol.11, 2016.

R. Janssen, E. F. Wouters, W. Janssens, W. Daamen, P. Hagedoorn et al., Copper-heparin inhalation therapy to repair emphysema: A scientific rationale, Int. J. Chronic Obstr. Pulm. Dis, vol.14, pp.2587-2602, 2019.

A. Mutti, M. Corradi, M. Goldoni, M. V. Vettori, A. Bernard et al., Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma, Chest, vol.129, pp.1288-1297, 2006.

M. Wehbe, A. W. Leung, M. J. Abrams, C. Orvig, and M. B. Bally, A Perspective-can copper complexes be developed as a novel class of therapeutics? Dalton Trans, vol.46, pp.10758-10773, 2017.

H. Ovet and F. Oztay, The copper chelator tetrathiomolybdate regressed bleomycin-induced pulmonary fibrosis in mice, by reducing lysyl oxidase expressions, Biol. Trace Elem. Res, vol.162, pp.189-199, 2014.

C. Stockmann, J. K. Roberts, V. K. Yellepeddi, and C. M. Sherwin, Clinical Pharmacokinetics of Inhaled Antimicrobials, vol.54, pp.473-492, 2015.

S. P. Velaga, J. Djuris, S. Cvijic, S. Rozou, P. Russo et al., Dry powder inhalers: An overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products, Eur. J. Pharm. Sci, vol.113, pp.18-28, 2018.

B. S. Quon, C. H. Goss, and B. W. Ramsey, Inhaled Antibiotics for Lower Airway Infections, Ann. Am. Thorac. Soc, vol.11, pp.425-434, 2014.

J. G. Weers and T. Tarara, Pulmonary Delivery of a Fluoroquinolone, 2009.

J. E. Comer, A. 5.16-Ionization Constants and Ionization Profiles, In Comprehensive Medicinal Chemistry II
URL : https://hal.archives-ouvertes.fr/hal-02432849

J. B. Taylor and D. J. Triggle, , pp.357-397, 2007.

X. Yu, G. L. Zipp, I. Davidson, and G. W. , The Effect of Temperature and pH on the Solubility of Quinolone Compounds: Estimation of Heat of Fusion, Pharm. Res, vol.11, pp.522-527, 1994.

S. V. Blokhina, A. V. Sharapova, M. V. Ol'khovich, T. V. Volkova, and G. L. Perlovich, Solubility, lipophilicity and membrane permeability of some fluoroquinolone antimicrobials, Eur. J. Pharm. Sci, vol.93, pp.29-37, 2016.

R. Jalil, M. E. Baschini, M. Sapag, and K. , Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite, Appl. Clay Sci, vol.114, pp.69-76, 2015.

T. E. Tarara and J. G. Weers, Pharmaceutical Formulation with an Insoluble Active Agent for Pulmonary Administration, Patent EP1589947B1, 2016.

J. Weers and T. Tarara, The PulmoSphere TM platform for pulmonary drug delivery, Ther. Deliv, vol.5, pp.277-295, 2014.

D. E. Geller, J. Weers, and S. Heuerding, Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphere TM Technology, J. Aerosol Med. Pulm. Drug Deliv, vol.24, pp.175-182, 2011.

F. Buttini, A. G. Balducci, G. Colombo, F. Sonvico, S. Montanari et al., Dose administration maneuvers and patient care in tobramycin dry powder inhalation therapy, Int. J. Pharm, vol.548, pp.182-191, 2018.

H. Stass, J. Nagelschmitz, H. Watz, and A. M. Kirsten, Safety and pharmacokinetics of two dose strengths of ciprofloxacin dry powder for inhalation (DPI) in patients with moderate to severe COPD, Eur. Respir. J, vol.40, p.2817, 2012.

. Bayer, Ciprofloxacin DPI (BAY q3939)-Briefing Document for FDA Advisory Committee Meeting, vol.FDA, p.146, 2017.

R. Wilson, T. Welte, E. Polverino, A. De-soyza, H. Greville et al., Ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis: A phase II randomised study, Eur. Respir. J, vol.41, pp.1107-1115, 2013.

T. Aksamit, T. Bandel, M. Criollo, A. De-soyza, J. S. Elborn et al., The RESPIRE trials: Two phase III, randomized, multicentre, placebo-controlled trials of Ciprofloxacin Dry Powder for Inhalation (Ciprofloxacin DPI) in non-cystic fibrosis bronchiectasis, Contemp. Clin. Trials, vol.58, pp.78-85, 2017.

T. Aksamit, A. De-soyza, T. Bandel, M. Criollo, J. S. Elborn et al., RESPIRE 2: A phase III placebo-controlled randomised trial of ciprofloxacin dry powder for inhalation in non-cystic fibrosis bronchiectasis, Eur. Respir. J, vol.51, 2018.

S. H. Chotirmall and J. D. Chalmers, RESPIRE: Breathing new life into bronchiectasis, Eur. Respir. J, 2018.

. Fda, Ciprofloxacin Dry Powder for Inhalation (DPI)-Meeting of the Antimicrobial Drugs Advisory Committee (AMDAC), vol.FDA, p.51, 2017.

J. Ernst, M. Klinger-strobel, K. Arnold, J. Thamm, A. Hartung et al., Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions, Eur. J. Pharm. Biopharm, vol.131, pp.120-129, 2018.

E. Sah and H. Sah, Recent Trends in Preparation of Poly(lactide-co-glycolide) Nanoparticles by Mixing Polymeric Organic Solution with Antisolvent, J. Nanomater, vol.794601, 2015.

N. Thomas, C. Thorn, K. Richter, B. Thierry, and C. Prestidge, Efficacy of Poly-Lactic-Co-Glycolic Acid Microand Nanoparticles of Ciprofloxacin Against Bacterial Biofilms, J. Pharm. Sci, vol.105, pp.3115-3122, 2016.

J. Shen and D. J. Burgess, Accelerated in-vitro release testing methods for extended-release parenteral dosage forms, J. Pharm. Pharmacol, vol.64, pp.986-996, 2012.

Y. Jeong, H. Na, D. Seo, D. Kim, H. Lee et al., Ciprofloxacin-encapsulated poly(dl-lactide-co-glycolide) nanoparticles and its antibacterial activity, Int. J. Pharm, vol.352, pp.317-323, 2008.

W. S. Cheow, M. W. Chang, and K. Hadinoto, Antibacterial efficacy of inhalable antibiotic-encapsulated biodegradable polymeric nanoparticles against E. coli biofilm cells, J. Biomed. Nanotechnol, vol.6, pp.391-403, 2010.

W. S. Cheow, M. W. Chang, and K. Hadinoto, Antibacterial Efficacy of Inhalable Levofloxacin-Loaded Polymeric Nanoparticles Against E. coli Biofilm Cells: The Effect of Antibiotic Release Profile, Pharm. Res, vol.27, pp.1597-1609, 2010.

Z. Qiao, Z. Yuan, W. Zhang, D. Wei, and N. Hu, Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres, Artif. Cells Nanomed. Biotechnol, vol.47, pp.790-798, 2019.

M. Torshabi, H. Nojehdehian, and F. S. Tabatabaei, In vitro behavior of poly-lactic-co-glycolic acid microspheres containing minocycline, metronidazole, and ciprofloxacin, J. Investig. Clin. Dent, vol.8, 2017.

M. Shirley, Amikacin Liposome Inhalation Suspension: A Review in Mycobacterium avium Complex Lung Disease, Drugs, vol.79, pp.555-562, 2019.

J. Zhang, F. Leifer, S. Rose, D. Y. Chun, J. Thaisz et al., Amikacin Liposome Inhalation Suspension (ALIS) Penetrates Non-tuberculous Mycobacterial Biofilms and Enhances Amikacin Uptake Into Macrophages, Front. Microbiol, vol.9, p.915, 2018.

C. S. Haworth, D. Bilton, J. D. Chalmers, A. M. Davis, J. Froehlich et al., Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): Two phase 3, randomised controlled trials, Lancet Respir. Med, vol.7, pp.213-226, 2019.

D. Cipolla, B. Shekunov, J. Blanchard, and A. Hickey, Lipid-based carriers for pulmonary products: Preclinical development and case studies in humans, Adv. Drug Deliv. Rev, vol.75, pp.53-80, 2014.

J. Weers, Comparison of Phospholipid-Based Particles for Sustained Release of Ciprofloxacin Following Pulmonary Administration to Bronchiectasis Patients, Pulm. Ther, vol.5, pp.127-150, 2019.

S. Chorepsima, K. S. Kechagias, G. Kalimeris, N. A. Triarides, and M. E. Falagas, Spotlight on inhaled ciprofloxacin and its potential in the treatment of non-cystic fibrosis bronchiectasis, Drug Des. Dev, vol.12, pp.4059-4066, 2018.

K. A. Hamblin, J. P. Wong, J. D. Blanchard, and H. S. Atkins, The potential of liposome-encapsulated ciprofloxacin as a tularemia therapy, Front. Cell Infect. Microbiol, 2014.

I. H. Norville, G. J. Hatch, K. R. Bewley, D. J. Atkinson, K. A. Hamblin et al., Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever, Antimicrob. Agents Chemother, vol.58, pp.5510-5518, 2014.

F. Tewes, J. Brillault, W. Couet, and J. Olivier, Formulation of rifampicin-cyclodextrin complexes for lung nebulization, J. Control. Release, vol.129, pp.93-99, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-01102812

B. Dutton, A. Woods, R. Sadler, D. Prime, D. J. Barlow et al., Using polar ion-pairs to control drug delivery to the airways of the lungs, Mol. Pharm, 2020.

H. Bandara, M. J. Herpin, D. Kolacny, A. Harb, D. Romanovicz et al., Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro, Mol. Pharm, vol.13, pp.2760-2770, 2016.

I. M. Deygen, A. M. Egorov, and E. V. Kudryashova, Structure and stability of fluoroquinolone-(2-hydroxypropyl) -?-cyclodextrin complexes as perspective antituberculosis drugs, Mosc. Univ. Chem. Bull, vol.71, pp.1-6, 2016.

H. Gursahani, J. Riggs-sauthier, J. Pfeiffer, D. Lechuga-ballesteros, and C. S. Fishburn, Absorption of Polyethylene Glycol (PEG) Polymers: The Effect of PEG Size on Permeability, J. Pharm. Sci, vol.98, pp.2847-2856, 2009.

E. M. Larsen and R. J. Johnson, Microbial esterases and ester prodrugs: An unlikely marriage for combating antibiotic resistance, Drug Dev. Res, vol.80, pp.33-47, 2019.

E. Forde and M. Devocelle, Pro-Moieties of Antimicrobial Peptide Prodrugs, Molecules, vol.20, pp.1210-1227, 2015.

Y. Wang, Q. Yuan, W. Feng, W. Pu, J. Ding et al., Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles, J. Nanobiotechnol, vol.17, p.103, 2019.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI