J. Ruland and L. Hartjes, CARD-BCL-10-MALT1 signalling in protective and pathological immunity, Nat Rev Immunol, vol.19, pp.118-134, 2019.

L. Sun, L. Deng, C. Ea, Z. Xia, and Z. J. Chen, The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes, Mol Cell, vol.14, pp.289-301, 2004.

A. Oeckinghaus, E. Wegener, V. Welteke, U. Ferch, S. C. Arslan et al.,

D. Scheidereit and . Krappmann, Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation, EMBO J, vol.26, pp.4634-4645, 2007.

H. Noels, G. Van-loo, S. Hagens, V. Broeckx, R. Beyaert et al., A Novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-kappaB activation by API2middle dotMALT1 fusions, J. Biol. Chem, vol.282, pp.10180-10189, 2007.

I. Meininger, R. A. Griesbach, D. Hu, T. Gehring, T. Seeholzer et al., Alternative splicing of MALT1 controls signalling and activation of CD4(+) T cells, Nat Commun, vol.7, p.11292, 2016.

S. Ginster, M. Bardet, A. Unterreiner, C. Malinverni, F. Renner et al.,

J. Gerrits, T. Voshol, C. H. Calzascia, M. Regnier, R. Renatus et al., Two Antagonistic MALT1 Auto-Cleavage Mechanisms Reveal a Role for TRAF6 to Unleash MALT1 Activation, PLoS One, vol.12, 2017.

L. David, Y. Li, J. Ma, E. Garner, X. Zhang et al., Assembly mechanism of the CARMA1-BCL10-MALT1-TRAF6 signalosome, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.1499-1504, 2018.

J. Chen and Z. J. Chen, Regulation of NF-kappaB by ubiquitination, Curr Opin Immunol, vol.25, pp.4-12, 2013.

M. Juilland and M. Thome, Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling, Frontiers in Immunology, vol.9, 2018.

,

A. Thys, T. Douanne, and N. Bidere, Post-translational Modifications of the CARMA1-BCL10-MALT1 Complex in Lymphocytes and Activated B-Cell Like Subtype of Diffuse Large B-Cell Lymphoma, Front Oncol, vol.8, p.498, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01908802

A. Gewies, O. Gorka, H. Bergmann, K. Pechloff, F. Petermann et al., Uncoupling Malt1 Threshold Function from Paracaspase Activity Results in Destructive Autoimmune Inflammation, Cell Reports, vol.9, pp.1292-1305, 2014.

F. Bornancin, F. Renner, R. Touil, H. Sic, Y. Kolb et al.,

D. D. Ohashi, T. Patel, and . Calzascia, Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation, J. Immunol, vol.194, pp.3723-3734, 2015.

M. Jaworski, B. J. Marsland, J. Gehrig, W. Held, S. Favre et al., Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity, EMBO J, vol.33, pp.2765-2781, 2014.

J. W. Yu, S. Hoffman, A. M. Beal, A. Dykon, M. A. Ringenberg et al., MALT1 Protease Activity Is Required for Innate and Adaptive Immune Responses, vol.10, 2015.

A. Demeyer, I. Skordos, Y. Driege, M. Kreike, T. Hochepied et al., MALT1 Proteolytic Activity Suppresses Autoimmunity in a T Cell Intrinsic Manner, vol.10, p.1898, 2019.

C. Pelzer, K. Cabalzar, A. Wolf, M. Gonzalez, G. Lenz et al., The protease activity of the paracaspase MALT1 is controlled by monoubiquitination, Nat Immunol, vol.14, pp.337-345, 2013.

M. Bardet, T. Seeholzer, A. Unterreiner, S. Woods, D. Krappmann et al., MALT1 activation by TRAF6 needs neither BCL10 nor CARD11, vol.506, pp.48-52, 2018.

D. Wang, Y. You, S. M. Case, L. M. Mcallister-lucas, L. Wang et al., A requirement for CARMA1 in TCR-induced NF-kappa B activation, Nat. Immunol, vol.3, pp.830-835, 2002.

T. Douanne, J. Gavard, and N. Bidère, The paracaspase MALT1 cleaves the LUBAC subunit HOIL1 during antigen receptor signaling, Journal of Cell Science, vol.129, pp.1775-1780, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01311283

D. Clift, W. A. Mcewan, L. I. Labzin, V. Konieczny, B. Mogessie et al.,

. Schuh, A Method for the Acute and Rapid Degradation of Endogenous Proteins, Cell, vol.171, pp.1692-1706, 2017.

T. Douanne, G. André-grégoire, A. Thys, K. Trillet, J. Gavard et al., CYLD Regulates Centriolar Satellites Proteostasis by Counteracting the E3 Ligase MIB1, vol.27, pp.1657-1665, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02128157

D. Clift, C. So, W. A. Mcewan, L. C. James, and M. Schuh, Acute and rapid degradation of endogenous proteins by Trim-Away, Nat Protoc, vol.13, pp.2149-2175, 2018.

A. Oeckinghaus, E. Wegener, V. Welteke, U. Ferch, S. C. Arslan et al., Malt1 ubiquitination triggers NF-kappaB signaling upon T-cell activation, EMBO J, vol.26, pp.4634-4645, 2007.

L. Deng, C. Wang, E. Spencer, L. Yang, A. Braun et al., Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitinconjugating enzyme complex and a unique polyubiquitin chain, Cell, vol.103, pp.351-361, 2000.

A. Adhikari, M. Xu, and Z. J. Chen, Ubiquitin-mediated activation of TAK1 and IKK, Oncogene, vol.26, pp.3214-3226, 2007.

A. Sorrentino, N. Thakur, S. Grimsby, A. Marcusson, V. Bulow et al., The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner, Nat. Cell Biol, vol.10, pp.1199-1207, 2008.

H. Shinohara, T. Yasuda, Y. Aiba, H. Sanjo, M. Hamadate et al., PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1, J. Exp. Med, vol.202, pp.1423-1431, 2005.

H. Shinohara, M. Behar, K. Inoue, M. Hiroshima, T. Yasuda et al., Positive feedback within a kinase signaling complex functions as a switch mechanism for NF-?B activation, Science, vol.344, pp.760-764, 2014.

M. E. Moreno-garcia, K. Sommer, H. Shinohara, A. D. Bandaranayake, T. Kurosaki et al., MAGUK-controlled ubiquitination of CARMA1 modulates lymphocyte NF-kappaB activity, Mol Cell Biol, vol.30, pp.922-934, 2010.

P. B. Shambharkar, M. Blonska, B. P. Pappu, H. Li, Y. You et al., Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways, EMBO J, vol.26, pp.1794-1805, 2007.

J. Wu, F. Powell, N. A. Larsen, Z. Lai, K. F. Byth et al., Mechanism and in vitro pharmacology of TAK1 inhibition by (5Z)-7-Oxozeaenol, ACS Chem. Biol, vol.8, pp.643-650, 2013.

J. Totzke, D. Gurbani, R. Raphemot, P. F. Hughes, K. Bodoor et al.,

A. K. Loiselle, L. S. Bera, M. M. Eibschutz, A. L. Perkins, P. L. Eubanks et al., Broadens the Therapeutic Efficacy of TNF-? Inhibition for Cancer and Autoimmune Disease, Takinib, a Selective TAK1 Inhibitor, vol.24, pp.1029-1039, 2017.

S. A. Scarneo, A. Mansourati, L. S. Eibschutz, J. Totzke, J. R. Roques et al., Genetic and pharmacological validation of TAK1 inhibition in macrophages as a therapeutic strategy to effectively inhibit TNF secretion, Sci Rep, vol.8, p.17058, 2018.

R. Matsumoto, D. Wang, M. Blonska, H. Li, M. Kobayashi et al.,

X. Wang and . Lin, Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation, Immunity, vol.23, pp.575-585, 2005.

K. Sommer, B. Guo, J. L. Pomerantz, A. D. Bandaranayake, M. E. Moreno-garcía et al., Phosphorylation of the CARMA1 linker controls NF-kappaB activation, Immunity, vol.23, pp.561-574, 2005.

M. Karin, Y. Yamamoto, and Q. M. Wang, The IKK NF-?B system: a treasure trove for drug development, Nature Reviews Drug Discovery, vol.3, pp.17-26, 2004.

N. Bidere, V. N. Ngo, J. Lee, C. Collins, L. Zheng et al.,

D. Anderson, A. Arnoult, K. Vazquez, J. Sakai, Z. Zhang et al., Casein kinase 1alpha governs antigen-receptor-induced NF-kappaB activation and human lymphoma cell survival, Nature, vol.458, pp.92-96, 2009.

T. Gehring, T. Erdmann, M. Rahm, C. Graß, A. Flatley et al., MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells, Cell Rep, vol.29, pp.873-888, 2019.

J. Cheng, L. R. Klei, N. E. Hubel, M. Zhang, R. Schairer et al., GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein, vol.130, pp.1036-1051, 2020.

(. and C. , Jurkat cells were treated with 10 ?M of Takinib (B) or 1 ?M Trametinib (C) for, p.1

, Cell lysates were prepared and subjected to Western blotting analysis as indicated

, Western blotting analysis of lysates from Jurkat cells transfected with an individual siRNA for TAK1 or scramble nonspecific siRNA, and stimulated as in (A)

, Carolina Alves Nicolau: Conceptualization, Methodology, Investigation, Writing -Original Draft, Writing -Review & Editing, Funding Acquisition. Julie Gavard: Supervision, Writing -Review & Editing, Funding Acquisition. Nicolas Bidère: Conceptualization, Writing -Original Draft, Writing -Review & Editing, Funding Acquisition ? Interfering with TAK1 enhances the proteolysis of MALT1 substrates

, ? TAK1 action on MALT1 activity requires the CARMA1-BCL10-MALT1 complex

, ? TAK1 inhibition augments CARMA1-BCL10-MALT1 assembly and MALT1 ubiquitination