S. Ehrenforth, W. Kreuz, I. Scharrer, and B. Kornhuber, Factor VIII inhibitors in haemophiliacs, Lancet, vol.340, p.253, 1992.

A. Pavlova, D. Delev, S. Lacroix-desmazes, R. Schwaab, M. Mende et al., Impact of polymorphisms of the major histocompatibility complex class II, interleukin-10, tumor necrosis factor-alpha and cytotoxic T-lymphocyte antigen-4 genes on inhibitor development in severe hemophilia A, J Thromb Haemost, vol.7, pp.2006-2021, 2009.

J. Astermark, S. M. Donfield, E. D. Gomperts, J. Schwarz, E. D. Menius et al., The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort, Blood, vol.121, pp.1446-54, 2013.

J. D. Dimitrov, S. Dasgupta, A. Navarrete, S. Delignat, Y. Repesse et al., Induction of heme oxygenase-1 in factor VIII-deficient mice reduces the immune response to therapeutic factor VIII, Blood, vol.115, pp.2682-2687, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02455593

E. A. James, S. D. Van-haren, R. A. Ettinger, K. Fijnvandraat, J. A. Liberman et al., T-cell responses in two unrelated hemophilia A inhibitor subjects include an epitope at the factor VIII R593C missense site, J Thromb Haemost, vol.9, pp.689-99, 2011.

D. Matino, M. Gargaro, E. Santagostino, D. Minno, M. Castaman et al., IDO1 suppresses inhibitor development in hemophilia A treated with factor VIII, J Clin Invest, vol.125, pp.3766-81, 2015.

A. Varthaman and S. Lacroix-desmazes, Pathogenic immune response to therapeutic factor VIII: exacerbated response or failed induction of tolerance? Haematologica, vol.104, pp.236-280, 2019.

S. Lacroix-desmazes, A. Navarrete, S. André, J. Bayry, S. V. Kaveri et al., Dynamics of factor VIII interactions determine its immunologic fate in hemophilia A, Blood, vol.112, pp.240-249, 2008.

S. D. Van-haren, E. Herczenik, A. Ten-brinke, K. Mertens, J. Voorberg et al., HLA-DR-presented peptide repertoires derived from human monocytederived dendritic cells pulsed with blood coagulation factor VIII, Mol Cell Proteomics, vol.10, 2011.

S. Dasgupta, A. Navarrete, J. Bayry, S. Delignat, B. Wootla et al., A role for exposed mannosylations in presentation of human therapeutic selfproteins to CD4+ T lymphocytes, Proc Natl Acad Sci, vol.104, pp.8965-70, 2007.

E. Herczenik, S. D. Van-haren, A. Wroblewska, P. Kaijen, M. Van-den-biggelaar et al., Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain, J Allergy Clin Immunol, vol.129, pp.1-5, 2012.

A. Wroblewska, S. D. Van-haren, E. Herczenik, P. Kaijen, A. Ruminska et al., Modification of an exposed loop in the C1 domain reduces immune responses to factor VIII in hemophilia A mice, Blood, vol.119, pp.5294-300, 2012.

B. Gangadharan, M. Ing, S. Delignat, I. Peyron, M. Teyssandier et al., The C1 and C2 domains of blood coagulation factor VIII mediate its endocytosis by dendritic cells, Haematologica, vol.102, pp.271-81, 2016.

Y. Repessé, S. Dasgupta, A. Navarrete, S. Delignat, S. V. Kaveri et al., Mannose-sensitive receptors mediate the uptake of factor VIII therapeutics by human dendritic cells, J Allergy Clin Immunol, vol.129, pp.1172-1175, 2012.

K. F. Medzihradszky, M. J. Besman, and A. L. Burlingame, Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversedphase high-performance liquid chromatography-electrospray ionization mass spectrometry, Anal Chem, vol.69, pp.3986-94, 1997.

C. Kannicht, M. Ramström, G. Kohla, M. Tiemeyer, E. Casademunt et al., Characterisation of the post-translational modifications of a novel, human cell line-derived recombinant human factor VIII, Thromb Res, vol.131, pp.78-88, 2013.

K. Canis, J. Anzengruber, E. Garenaux, M. Feichtinger, K. Benamara et al., In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: from structure to clinical implications, J Thromb Haemost, vol.16, pp.1592-603, 2018.

S. Delignat, Y. Repessé, L. Gilardin, J. D. Dimitrov, Y. C. Lone et al., Predictive immunogenicity of Refacto AF, Haemophilia, vol.20, pp.486-92, 2014.

S. J. Lee, S. Evers, D. Roeder, A. F. Parlow, J. Risteli et al., Mannose receptor-mediated regulation of serum glycoprotein homeostasis, Science, vol.295, pp.1898-901, 2002.

L. Bi, A. M. Lawler, S. E. Antonarakis, K. A. High, J. D. Gearhart et al., Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A, Nat Genet, vol.10, pp.119-140, 1995.

A. Pajot, M. Michel, N. Fazilleau, V. Pancré, C. Auriault et al., A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, Eur J Immunol, vol.34, pp.3060-3069, 2004.

P. Meulien, T. Faure, F. Mischler, H. Harrer, P. Ulrich et al., A new recombinant procoagulant protein derived from the cDNA encoding human factor VIII, Protein Eng, vol.2, pp.301-307, 1988.

N. Bihoreau, P. Paolantonacci, C. Bardelle, M. P. Fontaine-aupart, S. Krishnan et al., Structural and functional characterization of Factor VIII-delta II, a new recombinant Factor VIII lacking most of the B-domain, Biochem J, pp.23-31, 1991.

J. F. Healey, R. T. Barrow, H. M. Tamim, I. M. Lubin, M. Shima et al., Residues Glu2181-Val2243 contain a major determinant of the inhibitory epitope in the C2 domain of human factor VIII, Blood, vol.92, pp.3701-3710, 1998.

E. L. Saenko, M. Shima, G. E. Gilbert, and D. Scandella, Slowed release of thrombincleaved factor VIII from von Willebrand factor by a monoclonal and a human antibody is a novel mechanism for factor VIII inhibition, J Biol Chem, vol.271, pp.27424-27455, 1996.

I. Marx, P. J. Lenting, T. Adler, R. Pendu, O. D. Christophe et al., Correction of bleeding symptoms in von Willebrand factor-deficient mice by liver-expressed von Willebrand factor mutants, Arterioscler Thromb Vasc Biol, vol.28, pp.419-443, 2008.

I. Badirou, M. Kurdi, J. Rayes, P. Legendre, O. D. Christophe et al., Willebrand factor clearance does not involve proteolysis by ADAMTS-13, J Thromb Haemost, vol.8, pp.2338-2378, 2010.

M. B. Lutz, N. Kukutsch, A. L. Ogilvie, S. Rössner, F. Koch et al., An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow, J Immunol Methods, vol.223, pp.77-92, 1999.

M. Jacquemin, V. Vantomme, C. Buhot, R. Lavend'homme, W. Burny et al., CD4+ T-cell clones specific for wild-type factor VIII: a molecular mechanism responsible for a higher incidence of inhibitor formation in mild/moderate hemophilia A, Blood, vol.101, pp.1351-1359, 2003.

M. G. Jacquemin, B. G. Desqueper, A. Benhida, L. Vander-elst, M. F. Hoylaerts et al., Mechanism and kinetics of factor VIII inactivation: study with an IgG4 monoclonal antibody derived from a hemophilia A patient with inhibitor, Blood, vol.92, pp.496-506, 1998.

S. Delignat, Y. Repessé, A. Navarrete, Y. Meslier, N. Gupta et al., Immunoprotective effect of von Willebrand factor towards therapeutic factor VIII in experimental haemophilia A, Haemophilia, vol.18, pp.248-54, 2012.

W. Wei, S. Misra, M. V. Cannon, R. Yang, X. Zhu et al., Molecular mechanisms of missense mutations that generate ectopic N-glycosylation sites in coagulation factor VIII, Biochem J, vol.475, pp.873-86, 2018.

C. Zheng, H. Liu, J. Zhou, and B. Zhang, EF-hand domains of MCFD2 mediate interactions with both LMAN1 and coagulation factor V or VIII, Blood, vol.115, pp.1081-1088, 2010.

M. A. Cunningham, S. W. Pipe, B. Zhang, H. Hauri, D. Ginsburg et al., LMAN1 is a molecular chaperone for the secretion of coagulation factor VIII, J Thromb Haemost, vol.1, pp.2360-2367, 2003.

L. L. Swystun, C. Notley, I. Georgescu, J. D. Lai, K. Nesbitt et al., The endothelial lectin clearance receptor CLEC4M binds and internalizes factor VIII in a VWF-dependent and independent manner, J Thromb Haemost, vol.17, pp.681-94, 2019.

J. M. O'sullivan, P. V. Jenkins, R. O. Gegenbauer, K. Chion, A. Lavin et al., Galectin-1 and Galectin-3 constitute novel-binding partners for Factor VIII, Arterioscler Thromb Vasc Biol, vol.36, pp.855-63, 2016.

L. Y. Lee, C. Lin, S. Fanayan, N. H. Packer, and M. Thaysen-andersen, Differential site accessibility mechanistically explains subcellular-specific N-glycosylation determinants, Front Immunol, vol.5, p.404, 2014.

L. He, A. Crocker, J. Lee, J. Mendoza-ramirez, X. Wang et al., Antigenic targeting of the human mannose receptor induces tumor immunity, J Immunol, vol.178, pp.6259-67, 2007.

G. Ahlén, L. Strindelius, T. Johansson, A. Nilsson, N. Chatzissavidou et al., Mannosylated mucin-type immunoglobulin fusion proteins enhance antigen-specific antibody and T lymphocyte responses, PLoS One, vol.7, p.46959, 2012.

T. Geijtenbeek, S. J. Van-vliet, A. Engering, B. A. Hart, and Y. Van-kooyk, Self-and nonself-recognition by C-type lectins on dendritic cells, Annu Rev Immunol, vol.22, pp.33-54, 2004.

L. Martinez-pomares, The mannose receptor, J Leukoc Biol, vol.92, pp.1177-86, 2012.

K. Lundberg, A. Albrekt, I. Nelissen, S. Santegoets, T. D. De-gruijl et al., Transcriptional profiling of human dendritic cell populations and models-unique profiles of in vitro dendritic cells and implications on functionality and applicability, PLoS One, vol.8, p.52875, 2013.

S. Dasgupta, Y. Repessé, J. Bayry, A. Navarrete, B. Wootla et al., VWF protects FVIII from endocytosis by dendritic cells and subsequent presentation to immune effectors, Blood, vol.109, pp.610-612, 2007.

S. A. Linehan, L. Martínez-pomares, P. D. Stahl, and S. Gordon, Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: in situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells, J Exp Med, vol.189, pp.1961-72, 1999.

S. Burgdorf, V. Lukacs-kornek, and C. Kurts, The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation, J Immunol, vol.176, pp.6770-6776, 2006.

L. Martinez-pomares, L. G. Hanitsch, R. Stillion, S. Keshav, and S. Gordon, Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen, Lab Invest, vol.85, pp.1238-1287, 2005.

M. Pack, C. Trumpfheller, D. Thomas, C. G. Park, A. Granelli-piperno et al., DEC-205/CD205+ dendritic cells are abundant in the white pulp of the human spleen, including the border region between the red and white pulp, Int J Mol Sci, vol.123, pp.10113-10144, 2008.

A. Navarrete, S. Dasgupta, S. Delignat, G. Caligiuri, O. D. Christophe et al., Splenic marginal zone antigen-presenting cells are critical for the primary allo-immune response to therapeutic factor VIII in hemophilia A, J Thromb Haemost, vol.7, pp.1816-1839, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-02455596

S. Delignat-heudier, Therapeutic Strategies Against FVIII Immune Response in Hemophilia A?: By Modifying FVIII Structure, by Inhibiting B Cells Signalisation, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01537891