J. D. Lunemann, F. Nimmerjahn, and M. C. Dalakas, Intravenous immunoglobulin in neurology-mode of action and clinical efficacy, Nat. Rev. Neurol, vol.11, pp.80-89, 2015.

E. E. Perez, Update on the use of immunoglobulin in human disease: a review of evidence, J. Allergy Clin. Immunol, vol.139, pp.1-46, 2017.

I. Schwab and F. Nimmerjahn, Intravenous immunoglobulin therapy: how does IgG modulate the immune system?, Nat. Rev. Immunol, vol.13, pp.176-189, 2013.

C. Galeotti, S. V. Kaveri, and J. Bayry, IVIG-mediated effector functions in autoimmune and inflammatory diseases, Int. Immunol, vol.29, pp.491-498, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01723555

M. S. Maddur, S. V. Kaveri, and J. Bayry, Circulating normal IgG as stimulator of regulatory T cells: lessons from intravenous immunoglobulin, Trends Immunol, vol.38, pp.789-792, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01630293

J. F. Seite, Y. Shoenfeld, P. Youinou, and S. Hillion, What is the contents of the magic draft IVIg?, Autoimmun. Rev, vol.7, pp.435-439, 2008.

F. J. Staal and H. C. Clevers, WNT signalling and haematopoiesis: a WNT-WNT situation, Nat. Rev. Immunol, vol.5, pp.21-30, 2005.

F. J. Staal, T. C. Luis, and M. M. Tiemessen, WNT signalling in the immune system: WNT is spreading its wings, Nat. Rev. Immunol, vol.8, pp.581-593, 2008.

R. Nusse, . Wnt, and . Signaling, Cold Spring Harb. Perspect. Biol, vol.4, p.11163, 2012.

H. Clevers and R. Nusse, Wnt/beta-catenin signaling and disease, Cell, vol.149, pp.1192-1205, 2012.

D. Swafford and S. Manicassamy, Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance, Discov. Med, vol.19, pp.303-310, 2015.

A. Suryawanshi, Canonical wnt signaling in dendritic cells regulates Th1/ Th17 responses and suppresses autoimmune neuroinflammation, J. Immunol, vol.194, pp.3295-3304, 2015.

B. Wang, T. Tian, K. H. Kalland, X. Ke, and Y. Qu, Targeting Wnt/?-catenin signaling for cancer immunotherapy, Trends Pharmacol. Sci, vol.39, pp.648-658, 2018.

C. Y. Logan and R. Nusse, The Wnt signaling pathway in development and disease, Annu. Rev. Cell Dev. Biol, vol.20, pp.781-810, 2004.

M. D. Gordon and R. Nusse, Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors, J. Biol. Chem, vol.281, pp.22429-22433, 2006.

R. Nusse and H. Clevers, Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities, Cell, vol.169, pp.985-999, 2017.

C. Oderup, M. Lajevic, and E. C. Butcher, Canonical and noncanonical Wnt proteins program dendritic cell responses for tolerance, J. Immunol, vol.190, pp.6126-6134, 2013.

I. Manoharan, TLR2-dependent activation of beta-catenin pathway in dendritic cells induces regulatory responses and attenuates autoimmune inflammation, J. Immunol, vol.193, pp.4203-4213, 2014.

J. Bayry, Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin, Blood, vol.101, pp.758-765, 2003.

K. Ohkuma, Modulation of dendritic cell development by immunoglobulin G in control subjects and multiple sclerosis patients, Clin. Exp. Immunol, vol.150, pp.397-406, 2007.

A. R. Crow, D. Brinc, and A. Lazarus, New insight into the mechanism of action of IVIg: the role of dendritic cells, J. Thromb. Haemost, vol.7, issue.1, pp.245-248, 2009.

M. S. Maddur, Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin, J. Allergy Clin. Immunol, vol.127, pp.821-827, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455567

A. Fujii, Y. Kase, C. Suzuki, A. Kamizono, and T. Imada, An fc gamma receptor-mediated upregulation of the production of interleukin 10 by intravenous immunoglobulin in bone-marrow-derived mouse dendritic cells stimulated with lipopolysaccharide in vitro, J. Signal Transduct, p.239320, 2013.

S. Othy, Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1-mammalian target of rapamycin axis, J. Immunol, vol.190, pp.4535-4541, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455535

A. Kessel, Intravenous immunoglobulin therapy affects T regulatory cells by increasing their suppressive function, J. Immunol, vol.179, pp.5571-5575, 2007.

J. Trinath, Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells, Blood, vol.122, pp.1419-1427, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455532

A. S. Tjon, Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production, J. Immunol, vol.192, pp.5625-5634, 2014.

S. Li, Circulating Th17, Th22, and Th1 cells are elevated in the Guillain-Barre syndrome and downregulated by IVIg treatments, Mediators Inflamm, p.740947, 2014.

M. S. Maddur, Intravenous immunoglobulin exerts reciprocal regulation of Th1/Th17 cells and regulatory T cells in Guillain-Barre syndrome patients, Immunol. Res, vol.60, pp.320-329, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455503

M. M. Guo, Th17-and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease, Allergy, vol.70, pp.310-318, 2015.

B. M. Fiebiger, J. Maamary, A. Pincetic, and J. V. Ravetch, Protection in antibody-and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs, Proc. Natl Acad. Sci. USA, vol.112, pp.2385-2394, 2015.

M. S. Maddur, Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy, J. Neuroinflammation, vol.14, p.58, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502272

G. Zhang, Intravenous immunoglobulin promotes the proliferation of CD4(+)CD25(+) Foxp3(+) regulatory T cells and the cytokines secretion in patients with Guillain-Barre syndrome in vitro, J. Neuroimmunol, vol.336, p.577042, 2019.

D. Kimelman and W. Xu, Beta-catenin destruction complex: insights and questions from a structural perspective, Oncogene, vol.25, pp.7482-7491, 2006.

R. M. Anthony, T. Kobayashi, F. Wermeling, and J. V. Ravetch, Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway, Nature, vol.475, pp.110-113, 2011.

J. F. Seite, IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes, Blood, vol.116, pp.1698-1704, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01150519

I. Schwab, Broad requirement for terminal sialic acid residues and Fc?RIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo, Eur. J. Immunol, vol.44, pp.1444-1453, 2014.

S. Othy, Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin, Eur. J. Immunol, vol.44, pp.2059-2063, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455514

S. Bozza, F. Kasermann, S. V. Kaveri, L. Romani, and J. Bayry, Intravenous immunoglobulin protects from experimental allergic bronchopulmonary aspergillosis via a sialylation-dependent mechanism, Eur. J. Immunol, vol.49, pp.195-198, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02455434

J. Trinath, The WNT signaling pathway contributes to dectin-1-dependent inhibition of Toll-like receptor-induced inflammatory signature, Mol. Cell. Biol, vol.34, pp.4301-4314, 2014.

A. Suryawanshi, R. K. Tadagavadi, D. Swafford, and S. Manicassamy, Modulation of inflammatory responses by Wnt/beta-catenin signaling in dendritic cells: a novel immunotherapy target for autoimmunity and cancer, Front. Immunol, vol.7, p.460, 2016.

M. Guilliams, P. Bruhns, Y. Saeys, H. Hammad, and B. N. Lambrecht, The function of Fcgamma receptors in dendritic cells and macrophages, Nat. Rev. Immunol, vol.14, pp.94-108, 2014.

A. M. Boruchov, Activating and inhibitory IgG Fc receptors on human DCs mediate opposing functions, J. Clin. Invest, vol.115, pp.2914-2923, 2005.

X. Song, S. Tanaka, D. Cox, and S. C. Lee, Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction, J. Leukoc. Biol, vol.75, pp.1147-1155, 2004.

F. Skrzypek, Dectin-1 is required for human dendritic cells to initiate immune response to Candida albicans through Syk activation, Microbes Infect, vol.11, pp.661-670, 2009.

F. J. Staal and J. M. Sen, The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis, Eur. J. Immunol, vol.38, pp.1788-1794, 2008.

B. T. Macdonald, K. Tamai, and X. He, Wnt/beta-catenin signaling: components, mechanisms, and diseases, Dev. Cell, vol.17, pp.9-26, 2009.

T. P. Rao and M. Kuhl, An updated overview on Wnt signaling pathways: a prelude for more, Circ. Res, vol.106, pp.1798-1806, 2010.

A. J. Mikels and R. Nusse, Purified Wnt5a protein activates or inhibits betacatenin-TCF signaling depending on receptor context, PLoS Biol, vol.4, p.115, 2006.

M. Okamoto, Noncanonical Wnt5a enhances Wnt/beta-catenin signaling during osteoblastogenesis, Sci. Rep, vol.4, p.4493, 2014.

S. Handeli and J. A. Simon, A small-molecule inhibitor of Tcf/beta-catenin signaling down-regulates PPAR? and PPAR? activities, Mol. Cancer Ther, vol.7, pp.521-529, 2008.

X. Wang, Y. Yang, and M. M. Huycke, Commensal-infected macrophages induce dedifferentiation and reprogramming of epithelial cells during colorectal carcinogenesis, Oncotarget, vol.8, pp.102176-102190, 2017.

B. Ke, beta-catenin regulates innate and adaptive immunity in mouse liver ischemia-reperfusion injury, Hepatology, vol.57, pp.1203-1214, 2013.

B. Ma and M. O. Hottiger, Crosstalk between Wnt/beta-Catenin and NF-?B signaling pathway during inflammation, Front. Immunol, vol.7, p.378, 2016.

E. Aubin, R. Lemieux, and R. Bazin, Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation, Blood, vol.115, pp.1727-1734, 2010.

C. Galeotti, Intravenous immunoglobulin induces IL-4 in human basophils by signaling through surface-bound IgE, J. Allergy Clin. Immunol, vol.144, pp.524-535, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02284256

K. Yoshimura, Increased nitric oxide production by neutrophils in early stage of Kawasaki disease, Eur. J. Pediatr, vol.168, pp.1037-1041, 2009.

C. Schneider, IVIG regulates the survival of human but not mouse neutrophils, Sci. Rep, vol.7, p.1296, 2017.

L. P. Cousens, Tregitope update: mechanism of action parallels IVIg, Autoimmun. Rev, vol.12, pp.436-443, 2013.

J. F. Seite, TLR9 responses of B cells are repressed by intravenous immunoglobulin through the recruitment of phosphatase, J. Autoimmun, vol.37, pp.190-197, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00771231

T. Tha-in, Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells, Blood, vol.110, pp.3253-3262, 2007.

R. Kapur, Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia, Platelets, vol.28, pp.521-524, 2017.

J. Bayry, K. Bansal, M. D. Kazatchkine, and S. V. Kaveri, DC-SIGN and alpha2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells, Proc. Natl Acad. Sci. USA, vol.106, p.24, 2009.

C. Bruckner, C. Lehmann, D. Dudziak, F. Nimmerjahn, and . Sweet, SIGNs: IgG glycosylation leads the way in IVIG-mediated resolution of inflammation, Int. Immunol, vol.29, pp.499-509, 2017.

R. M. Anthony, F. Wermeling, M. C. Karlsson, and J. V. Ravetch, Identification of a receptor required for the anti-inflammatory activity of IVIG, Proc. Natl Acad. Sci. USA, vol.105, pp.19571-19578, 2008.

M. Sharma, Regulatory T cells induce activation rather than suppression of human basophils, Sci. Immunol, vol.3, p.829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01817714

M. Sharma, Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients, Sci. Rep, vol.4, p.5672, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358914

A. H. Massoud, Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells, J. Allergy Clin. Immunol, vol.133, p.855, 2014.

S. Manicassamy, Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine, Science, vol.329, pp.849-853, 2010.

X. Liang, beta-catenin mediates tumor-induced immunosuppression by inhibiting cross-priming of CD8(+) T cells, J. Leukoc. Biol, vol.95, pp.179-190, 2014.

C. Fu, beta-Catenin in dendritic cells exerts opposite functions in crosspriming and maintenance of CD8+ T cells through regulation of IL-10, Proc. Natl Acad. Sci. USA, vol.112, pp.2823-2828, 2015.

C. Galeotti, Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin, Sci. Rep, vol.6, p.19592, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01274079

M. Shan, Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals, Science, vol.342, pp.447-453, 2013.

A. Pincetic, Type I and type II Fc receptors regulate innate and adaptive immunity, Nat. Immunol, vol.15, pp.707-716, 2014.

A. Franco, Human Fc receptor-like 5 binds intact IgG via mechanisms distinct from those of Fc receptors, J. Immunol, vol.190, pp.5739-5746, 2013.

I. Quast, Protection from experimental autoimmune encephalomyelitis by polyclonal IgG requires adjuvant-induced inflammation, J. Neuroinflammation, vol.13, p.42, 2016.

A. Ephrem, Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis, Blood, vol.111, pp.715-722, 2008.

C. A. Figueiredo, Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor, PLoS ONE, vol.9, p.101947, 2014.

M. Das, Intravenous immunoglobulin mediates anti-inflammatory effects in peripheral blood mononuclear cells by inducing autophagy, Cell Death Dis, vol.11, p.50, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02455428

S. Mukherjee, A. Karnam, M. Das, S. P. Babu, and J. Bayry, Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4, Commun. Biol, vol.2, p.169, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02455413