S. Weckhuysen, S. Mandelstam, and A. Suls, KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy, Ann Neurol, vol.71, pp.15-25, 2012.

H. Saitsu, M. Kato, and A. Koide, Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome, Ann Neurol, vol.72, pp.298-300, 2012.

M. Milh, N. Boutry-kryza, and J. Sutera-sardo, Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2, Orphanet J Rare Dis, vol.8, p.80, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00829466

M. Milh, C. Lacoste, and P. Cacciagli, Variable clinical expression in patients with mosaicism for KCNQ2 mutations, Am J Med Genet, vol.167, pp.2314-2322, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01664288

R. Morris, Developments of a water-maze procedure for studying spatial learning in the rat, J Neurosci Methods, vol.11, pp.47-60, 1984.

C. A. Barnes, Neurological and behavioral investigations of memory failure in aging animals, Int J Neurol, pp.130-136, 1987.

R. O. Makanjuola, G. Hill, R. C. Dow, G. Campbell, and G. W. Ashcroft, The effects of psychotropic drugs on exploratory and stereotyped behaviour of rats studied on a hole-board, Psychopharmacology, vol.55, pp.67-74, 1977.

X. Caubit, P. Gubellini, and J. Andrieux, TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons, Nat Genet, vol.48, pp.1359-69, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01432295

P. L. Roubertoux, N. Baril, and P. Cau, Cognitive and motor profiles associated with partial trisomy. Modeling Down syndrome in mice, Behav Genet, vol.47, pp.305-327, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01614900

S. C. Collins, C. Wagner, and L. Gagliardi, A method for parasagittal sectioning for neuroanatomical quantification of brain structures in the adult mouse, Curr Protoc Mouse Biol, vol.8, p.48, 2018.

P. L. Roubertoux, A. Ghata, and M. Carlier, Measuring preweaning sensorial and motor development in the mouse, Curr Protoc Mouse Biol, vol.8, pp.54-78, 2018.

F. M. Bercum, K. M. Rodgers, and A. M. Benison, Maternal stress combined with terbutaline leads to comorbid autistic-like behavior and epilepsy in a rat model, J Neurosci, vol.35, pp.15894-902, 2015.

T. Ravizza, F. Y. Onat, and A. R. Brooks-kayal, WONOEP appraisal: biomarkers of epilepsy-associated comorbidities, Epilepsia, vol.58, pp.331-373, 2017.

A. Thomas, A. Burant, N. Bui, D. Graham, L. A. Yuva-paylor et al., Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety, Psychopharmacology, vol.204, pp.361-73, 2009.

H. Watanabe, E. Nagata, and A. Kosakai, Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability, J Neurochem, vol.75, pp.28-33, 2000.

Y. Yang, B. J. Beyer, and J. F. Otto, Spontaneous deletion of epilepsy gene orthologs in a mutant mouse with a low electroconvulsive threshold, Hum Mol Genet, vol.12, pp.975-84, 2003.

J. F. Otto, Y. Yang, W. N. Frankel, K. S. Wilcox, and H. S. White, Mice carrying the szt1 mutation exhibit increased seizure susceptibility and altered sensitivity to compounds acting at the m-channel, Epilepsia, vol.45, pp.1009-1025, 2004.

J. F. Otto, Y. Yang, W. N. Frankel, H. S. White, and K. S. Wilcox, A spontaneous mutation involving Kcnq2 (Kv7.2) reduces M-current density and spike frequency adaptation in mouse CA1 neurons, J Neurosci, vol.26, pp.2053-2062, 2006.

H. C. Peters, H. Hu, O. Pongs, J. F. Storm, and D. Isbrandt, Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior, Nat Neurosci, vol.8, pp.51-60, 2005.

B. C. Schroeder, C. Kubisch, V. Stein, and T. J. Jentsch, Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy, Nature, vol.396, pp.687-90, 1998.

J. A. Kearney, Y. Yang, and B. Beyer, Severe epilepsy resulting from genetic interaction between Scn2a and Kcnq2, Hum Mol Genet, vol.15, pp.1043-1051, 2006.

N. A. Hawkings, M. S. Martin, W. N. Frankel, J. A. Kearney, and A. Escayg, Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus, Neurobiol Dis, vol.41, pp.655-60, 2011.

J. F. Otto, N. A. Singh, and E. J. Dahle, Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions, Epilepsia, vol.50, pp.1752-1761, 2009.

N. A. Singh, J. F. Otto, and E. J. Dahle, Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization, J Physiol, vol.586, pp.3405-3428, 2008.

Y. Tomonoh, M. Deshimaru, and K. Araki, The kick-in system: a novel rapid knock-in strategy, PLoS One, vol.9, p.88549, 2014.

T. Uchida, C. Lossin, and Y. Ihara, Abnormal g-aminobutyric acid neurotransmission in a Kcnq2 model of early onset epilepsy, Epilepsia, vol.58, pp.1430-1439, 2017.

Z. Niday, V. E. Hawkins, H. Soh, D. K. Mulkey, and A. V. Tzingounis, Epilepsy-associated KCNQ2 channels regulate multiple intrinsic properties of layer 2/3 pyramidal neurons, J Neurosci, vol.37, pp.576-86, 2017.

D. L. Greene, A. Kosenko, and N. Hoshi, Attenuating M-current suppression in vivo by a mutant Kcnq2 gene knock-in reduces seizure burden and prevents status epilepticus-induced neuronal death and epileptogenesis, Epilepsia, vol.59, pp.1908-1926, 2018.

Y. Yamatogi and S. Ohtahara, Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases, Brain Dev, vol.24, pp.13-23, 2002.

G. Orhan, M. Bock, and D. Schepers, Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy, Ann Neurol, vol.75, pp.382-94, 2014.

E. Remmelink, U. Chau, A. B. Smit, M. Verhage, and M. Loos, A one-week 5-choice serial reaction time task to measure impulsivity and attention in adult and adolescent mice, Sci Rep, vol.7, p.42519, 2017.

H. Eichenbaum, Time (and space) in the hippocampus, Curr Opin Behav Sci, vol.17, pp.65-70, 2017.

C. Lever, S. Burton, and J. O'keefe, Rearing on hind legs, environmental novelty, and the hippocampal formation, Rev Neurosci, vol.17, pp.111-144, 2006.