J. Guarner, J. Bartlett, E. A. Whitney, P. L. Raghunathan, Y. Stienstra et al., Histopathologic features of Mycobacterium ulcerans infection, Emerg Infect Dis, vol.9, pp.651-656, 2003.

Q. B. Vincent, M. Ardant, A. Adeye, A. Goundote, J. Saint-andré et al., Clinical epidemiology of laboratory-confirmed Buruli ulcer in Benin: a cohort study, Lancet Glob Health, vol.2, pp.70223-70225, 2014.

J. Hayman and A. Mcqueen, The pathology of Mycobacterium ulcerans infection, Pathology, vol.17, pp.594-600, 1985.

M. S. Oliveira, A. G. Fraga, E. Torrado, A. G. Castro, J. P. Pereira et al., Infection with Mycobacterium ulcerans induces persistent inflammatory responses in mice, Infect Immun, vol.73, pp.6299-6310, 2005.

A. Yerramilli, E. L. Tay, A. J. Stewardson, P. G. Kelley, E. Bishop et al., The location of Australian Buruli ulcer lesions-implications for unravelling disease transmission, PLoS Negl Trop Dis, vol.11, 2017.

T. S. Van-der-werf, W. T. Van-der-graaf, J. W. Tappero, and K. Asiedu, Mycobacterium ulcerans infection, Lancet, vol.354, pp.1156-1159, 1999.

N. Pszolla, M. R. Sarkar, W. Strecker, P. Kern, L. Kinzl et al., Buruli ulcer: a systemic disease, Clin Infect Dis, vol.37, pp.78-82, 2003.

M. J. Loftus, E. L. Tay, M. Globan, C. J. Lavender, S. R. Crouch et al., Epidemiology of Buruli ulcer infections, vol.24, pp.2011-2016, 1988.

A. Toll, F. Gallardo, M. Ferran, M. Gilaberte, M. Iglesias et al., Aggressive multifocal Buruli ulcer with associated osteomyelitis in an HIV-positive patient, Clin Exp Dermatol, vol.30, pp.649-651, 2005.

J. R. Wallace, K. M. Mangas, J. L. Porter, R. Marcsisin, S. J. Pidot et al., , 2017.

, Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer, PLoS Negl Trop Dis, vol.11

L. Marsollier, R. Robert, A. J. , S. Andre, J. P. Kouakou et al., Aquatic insects as a vector for Mycobacterium ulcerans, Appl Environ Microbiol, vol.68, pp.4623-4628, 2002.

W. M. Meyers, W. M. Shelly, D. H. Connor, and E. K. Meyers, Human Mycobacterium ulcerans infections developing at sites of trauma to skin, Am J Trop Med Hyg, vol.23, pp.919-923, 1974.

A. H. Buultjens, K. Vandelannoote, C. J. Meehan, M. Eddyani, B. C. De-jong et al., Comparative genomics shows that Mycobacterium ulcerans migration and expansion preceded the rise of Buruli ulcer in southeastern Australia, Appl Environ Microbiol, vol.84, pp.2612-2629, 2018.

H. Simpson, K. Deribe, E. N. Tabah, A. Peters, I. Maman et al., Mapping the global distribution of Buruli ulcer: a systematic review with evidence consensus, Lancet Glob Health, vol.7, issue.19, pp.30171-30179, 2019.

T. P. Stinear, T. Seemann, S. Pidot, W. Frigui, G. Reysset et al., Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer, Genome Res, vol.17, pp.192-200, 2007.

L. Marsollier, T. Stinear, A. J. , S. Andre, J. P. Robert et al., Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment, Appl Environ Microbiol, vol.70, pp.1097-1103, 2004.

M. J. Loftus, J. A. Trubiano, E. L. Tay, C. J. Lavender, M. Globan et al., The incubation period of Buruli ulcer (Mycobacterium ulcerans infection) in Victoria, Australia -Remains similar despite changing geographic distribution of disease, PLoS Negl Trop Dis, vol.12, 2018.

J. A. Trubiano, C. J. Lavender, J. A. Fyfe, S. Bittmann, and P. D. Johnson, The incubation period of Buruli ulcer (Mycobacterium ulcerans infection), PLoS Negl Trop Dis, vol.7, 2013.

F. S. Sarfo, R. Phillips, K. Asiedu, E. Ampadu, N. Bobi et al., Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease, Antimicrob Agents Chemother, vol.54, pp.3678-3685, 2010.

W. A. Nienhuis, Y. Stienstra, W. A. Thompson, P. C. Awuah, K. M. Abass et al., Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial, Lancet, vol.375, pp.664-672, 2010.

A. C. Wadagni, Y. T. Barogui, R. C. Johnson, G. E. Sopoh, D. Affolabi et al., Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: a randomised controlled trial, Lancet Infect Dis, vol.18, issue.18, pp.30160-30169, 2018.

D. Zingue, A. Bouam, R. Tian, and M. Drancourt, Buruli ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans, Clin Microbiol Rev, vol.31, pp.45-62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791637

A. Tanghe, P. Y. Adnet, T. Gartner, and K. Huygen, A booster vaccination with Mycobacterium bovis BCG does not increase the protective effect of the vaccine against experimental Mycobacterium ulcerans infection in mice, Infect Immun, vol.75, pp.2642-2644, 2007.

P. J. Converse, D. V. Almeida, E. L. Nuermberger, and J. H. Grosset, BCGmediated protection against Mycobacterium ulcerans infection in the mouse, PLoS Negl Trop Dis, vol.5, p.985, 2011.

A. G. Fraga, T. G. Martins, E. Torrado, K. Huygen, F. Portaels et al., Cellular immunity confers transient protection in experimental Buruli ulcer following BCG or mycolactone-negative Mycobacterium ulcerans vaccination, PLoS One, vol.7, 2012.

D. S. Walsh, D. Cruz, E. C. Abalos, R. M. Tan, E. V. Walsh et al., Clinical and histologic features of skin lesions in a cynomolgus monkey experimentally infected with Mycobacterium ulcerans (Buruli ulcer) by intradermal inoculation, Am J Trop Med Hyg, vol.76, pp.132-134, 2007.

R. H. Ortiz, D. A. Leon, H. O. Estevez, A. Martin, J. L. Herrera et al., Differences in virulence and immune response induced in a murine model by isolates of Mycobacterium ulcerans from different geographic areas, Clin Exp Immunol, vol.157, pp.271-281, 2009.

M. Bolz, N. Ruggli, M. T. Ruf, M. E. Ricklin, G. Zimmer et al., Experimental infection of the pig with Mycobacterium ulcerans: a novel model for studying the pathogenesis of Buruli ulcer disease, PLoS Negl Trop Dis, vol.8, 2014.

E. Marion, U. Jarry, C. Cano, C. Savary, C. Beauvillain et al., FVB/N mice spontaneously heal ulcerative lesions induced by Mycobacterium ulcerans and switch M. ulcerans into a low mycolactone producer, J Immunol, vol.196, pp.2690-2698, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01284881

A. Bénard, C. Sala, and G. Pluschke, Mycobacterium ulcerans mouse model refinement for pre-clinical profiling of vaccine candidates, PLoS One, vol.8, p.167059, 2016.

D. S. Walsh, W. M. Meyers, R. E. Krieg, and G. P. Walsh, Transmission of Mycobacterium ulcerans to the nine-banded armadillo, Am J Trop Med Hyg, vol.61, pp.694-697, 1999.

A. Tanghe, J. Content, J. P. Van-vooren, F. Portaels, and K. Huygen, Protective efficacy of a DNA vaccine encoding antigen 85A from Mycobacterium bovis BCG against Buruli ulcer, Infect Immun, vol.69, pp.5403-5411, 2001.

A. Tanghe, J. P. Dangy, G. Pluschke, and K. Huygen, Improved protective efficacy of a species-specific DNA vaccine encoding mycolyl-transferase Ag85A from Mycobacterium ulcerans by homologous protein boosting, 2008.

, PLoS Negl Trop Dis, vol.2, p.199

M. Bolz, A. Benard, A. M. Dreyer, S. Kerber, A. Vettiger et al., Vaccination with the surface proteins MUL_2232 and MUL_3720 of Mycobacterium ulcerans induces antibodies but fails to provide protection against Buruli ulcer, PLoS Negl Trop Dis, vol.10, 2016.

B. E. Hart, L. P. Hale, and L. S. , Immunogenicity and protection conferred by a recombinant Mycobacterium marinum vaccine against Buruli ulcer, Trials Vaccinol, vol.5, pp.88-91, 2016.

B. E. Hart, L. P. Hale, and S. Lee, Recombinant BCG expressing Mycobacterium ulcerans Ag85A imparts enhanced protection against experimental Buruli ulcer, PLoS Negl Trop Dis, vol.9, 2015.

B. E. Hart and S. Lee, Overexpression of a Mycobacterium ulcerans Ag85B-EsxH fusion protein in recombinant BCG improves experimental Buruli ulcer vaccine efficacy, PLoS Negl Trop Dis, vol.10, p.5229, 2016.

U. Gowthaman, K. Mushtaq, A. C. Tan, P. K. Rai, D. C. Jackson et al., Challenges and solutions for a rational vaccine design for TBendemic regions, Crit Rev Microbiol, vol.41, pp.389-398, 2015.

K. M. George, D. Chatterjee, G. Gunawardana, D. Welty, J. Hayman et al., Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence, Science, vol.283, pp.854-857, 1999.

J. Ogbechi, B. S. Hall, T. Sbarrato, J. Taunton, A. E. Willis et al., Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4, Cell Death Dis, vol.9, 2018.

L. Baron, A. O. Paatero, J. D. Morel, F. Impens, L. Guenin-mace et al., Mycolactone subverts immunity by selectively blocking the Sec61 translocon, J Exp Med, vol.213, pp.2885-2896, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01432024

E. Coutanceau, J. Decalf, A. Martino, A. Babon, N. Winter et al., Selective suppression of dendritic cell functions by Mycobacterium ulcerans toxin mycolactone, J Exp Med, vol.204, pp.1395-1403, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-01402321

J. L. Meier and M. D. Burkart, Proteomic analysis of polyketide and nonribosomal peptide biosynthesis, Curr Opin Chem Biol, vol.15, pp.48-56, 2011.

S. Boulkroun, L. Guenin-mace, M. I. Thoulouze, M. Monot, A. Merckx et al., Mycolactone suppresses T cell responsiveness by altering both early signaling and posttranslational events, J Immunol, vol.184, pp.1436-1444, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00594632

A. A. Pahlevan, D. J. Wright, C. Andrews, K. M. George, P. L. Small et al., The inhibitory action of Mycobacterium ulcerans soluble factor on monocyte/T cell cytokine production and NF-kappa B function, J Immunol, vol.163, pp.3928-3935, 1999.

E. Torrado, A. G. Fraga, E. Logarinho, T. G. Martins, J. A. Carmona et al., IFN-?-dependent activation of macrophages during experimental infections by Mycobacterium ulcerans is impaired by the toxin mycolactone, J Immunol, vol.184, p.947, 2010.

T. P. Stinear, A. Mve-obiang, P. L. Small, W. Frigui, M. J. Pryor et al., Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans, Proc Natl Acad Sci U S A, vol.101, pp.1345-1349, 2004.

T. P. Stinear, M. J. Pryor, J. L. Porter, and C. St, Functional analysis and annotation of the virulence plasmid pMUM001 from Mycobacterium ulcerans, Microbiology, vol.151, pp.683-692, 2005.

V. Roupie, S. J. Pidot, T. Einarsdottir, C. Van-den-poel, F. Jurion et al., Analysis of the vaccine potential of plasmid DNA encoding nine mycolactone polyketide synthase domains in Mycobacterium ulcerans infected mice, PLoS Negl Trop Dis, vol.8, 2014.

B. Y. Chua, W. Zeng, and D. C. Jackson, Synthesis of Toll-like receptor-2 targeting lipopeptides as self-adjuvanting vaccines, Methods Mol Biol, vol.494, pp.247-261, 2008.

Z. Wang, L. Kedzierski, S. Nuessing, B. Y. Chua, S. M. Quinones-parra et al., Establishment of memory CD8 ? T cells with live attenuated influenza virus across different vaccination doses, J Gen Virol, vol.97, pp.3205-3214, 2016.

E. Coutanceau, P. Legras, L. Marsollier, G. Reysset, S. T. Cole et al., Immunogenicity of Mycobacterium ulcerans Hsp65 and protective efficacy of a Mycobacterium leprae Hsp65-based DNA vaccine against Buruli ulcer, Microbes Infect, vol.8, pp.2075-2081, 2006.

G. Trigo, T. G. Martins, A. G. Fraga, A. Longatto-filho, A. G. Castro et al., Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model, PLoS Negl Trop Dis, vol.7, 2013.

M. Watanabe, H. Nakamura, R. Nabekura, N. Shinoda, E. Suzuki et al., Protective effect of a dewaxed whole-cell vaccine against Mycobacterium ulcerans infection in mice, Vaccine, vol.33, pp.2232-2239, 2015.

J. P. Dangy, N. Scherr, P. Gersbach, M. N. Hug, R. Bieri et al., Antibody-mediated neutralization of the exotoxin mycolactone, the main virulence factor produced by Mycobacterium ulcerans, PLoS Negl Trop Dis, vol.10, 2016.

J. L. Porter, N. J. Tobias, S. J. Pidot, S. Falgner, K. L. Tuck et al., The cell wall-associated mycolactone polyketide synthases are necessary but not sufficient for mycolactone biosynthesis, PLoS One, vol.8, issue.70520, 2013.

S. J. Pidot, J. L. Porter, L. Marsollier, A. Chauty, F. Migot-nabias et al., Serological evaluation of Mycobacterium ulcerans antigens identified by comparative genomics, PLoS Negl Trop Dis, vol.4, 2010.

S. J. Pidot, H. Hong, T. Seemann, J. L. Porter, M. J. Yip et al., Deciphering the genetic basis for polyketide variation among mycobacteria producing mycolactones, BMC Genomics, vol.9, p.462, 2008.

T. F. Omansen, J. L. Porter, P. Johnson, T. S. Van-der-werf, Y. Stienstra et al., In-vitro activity of avermectins against Mycobacterium ulcerans, PLoS Negl Trop Dis, vol.9, 2015.

T. F. Omansen, R. A. Marcsisin, B. Y. Chua, W. Zeng, D. C. Jackson et al., In vivo imaging of bioluminescent Mycobacterium ulcerans: a tool to refine the murine Buruli ulcer tail model, Am J Trop Med Hyg, vol.101, pp.1312-1321, 2019.

V. Van-belle, K. Pelckmans, S. Van-huffel, and J. A. Suykens, Support vector methods for survival analysis: a comparison between ranking and regression approaches, Artif Intell Med, vol.53, pp.107-118, 2011.

T. Kamala, Hock immunization: a humane alternative to mouse footpad injections, J Immunol Methods, vol.328, pp.204-214, 2007.

D. P. O'brien, A. Murrie, P. Meggyesy, J. Priestley, A. Rajcoomar et al., Spontaneous healing of Mycobacterium ulcerans disease in Australian patients, PLoS Negl Trop Dis, vol.13, 2019.

E. Marion, A. Chauty, M. Kempf, L. Corre, Y. Delneste et al., Clinical features of spontaneous partial healing during Mycobacterium ulcerans infection, Open Forum Infect Dis, vol.3, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01281366

R. Silva-gomes, E. Marcq, G. Trigo, C. M. Gonçalves, A. Longatto-filho et al., Spontaneous healing of Mycobacterium ulcerans lesions in the guinea pig model, PLoS Negl Trop Dis, vol.9, 2015.

A. C. Tan, E. J. Mifsud, W. Zeng, K. Edenborough, J. Mcvernon et al., Intranasal administration of the TLR2 agonist Pam 2 Cys provides rapid protection against influenza in mice, Mol Pharm, vol.9, pp.2710-2718, 2012.

E. J. Mifsud, A. C. Tan, P. C. Reading, and D. C. Jackson, Mapping the pulmonary environment of animals protected from virulent H1N1 influenza infection using the TLR-2 agonist Pam 2 Cys, Immunol Cell Biol, vol.94, pp.169-176, 2016.

E. J. Mifsud, A. C. Tan, K. R. Short, L. E. Brown, B. Y. Chua et al., Reducing the impact of influenza-associated secondary pneumococcal infections, Immunol Cell Biol, vol.94, pp.101-108, 2016.

T. M. Gooding, P. D. Johnson, D. E. Campbell, J. A. Hayman, E. L. Hartland et al., Immune response to infection with Mycobacterium ulcerans, Infect Immun, vol.69, pp.1704-1707, 2001.

K. Tolosie and M. K. Sharma, Application of Cox proportional hazards model in case of tuberculosis patients in selected Addis Ababa health centres, Ethiopia. Tuberc Res Treat, p.536976, 2014.

S. R. Cole and M. G. Hudgens, Survival analysis in infectious disease research: describing events in time, AIDS, vol.24, pp.2423-2431, 2010.

A. J. Forster, M. Taljaard, N. Oake, K. Wilson, V. Roth et al., The effect of hospital-acquired infection with Clostridium difficile on length of stay in hospital, CMAJ, vol.184, pp.37-42, 2012.

V. Kalia and S. Sarkar, Regulation of effector and memory CD8 T cell differentiation by IL-2-a balancing act, Front Immunol, vol.9, p.2987, 2018.

A. G. Fraga, A. Cruz, T. G. Martins, E. Torrado, M. Saraiva et al., Mycobacterium ulcerans triggers T-cell immunity followed by local and regional but not systemic immunosuppression, Infect Immun, vol.79, pp.421-430, 2011.

R. Phillips, F. S. Sarfo, L. Guenin-mace, J. Decalf, M. Wansbrough-jones et al., Immunosuppressive signature of cutaneous Mycobacterium ulcerans infection in the peripheral blood of patients with Buruli ulcer disease, J Infect Dis, vol.200, pp.1675-1684, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-01402286

A. E. Kiszewski, E. Becerril, L. D. Aguilar, I. T. Kader, W. Myers et al., The local immune response in ulcerative lesions of Buruli disease, Clin Exp Immunol, vol.143, pp.445-451, 2006.

E. Peduzzi, C. Groeper, D. Schutte, P. Zajac, S. Rondini et al., Local activation of the innate immune system in Buruli ulcer lesions, J Invest Dermatol, vol.127, pp.638-645, 2007.

J. Ray, J. Wang, J. Chan, and D. E. Kirschner, The timing of TNF and IFN-gamma signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection, J Theor Biol, vol.252, pp.24-38, 2008.

Y. V. Cavalcanti, M. C. Brelaz, J. K. Neves, J. C. Ferraz, and V. R. Pereira, Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis, Pulm Med, p.745483, 2012.

B. S. Hall, K. Hill, M. Mckenna, J. Ogbechi, S. High et al., The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER, PLoS Pathog, vol.10, p.1004061, 2014.

E. Torrado, S. Adusumilli, A. G. Fraga, P. Small, A. G. Castro et al., Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with Mycobacterium ulcerans has implications for the control of infection, Infect Immun, vol.75, pp.3979-3988, 2007.

R. Bieri, M. Bolz, M. Ruf, and G. Pluschke, Interferon-? is a crucial activator of early host immune defense against Mycobacterium ulcerans infection in mice, PLoS Negl Trop Dis, vol.10, 2016.

R. Phillips, C. Horsfield, J. Mangan, K. Laing, S. Etuaful et al., Cytokine mRNA expression in Mycobacterium ulcerans-infected human skin and correlation with local inflammatory response, Infect Immun, vol.74, pp.2917-2924, 2006.

B. D. Westenbrink, Y. Stienstra, M. G. Huitema, W. A. Thompson, E. O. Klutse et al., Cytokine responses to stimulation of whole blood from patients with Buruli ulcer disease in Ghana, Clin Diagn Lab Immunol, vol.12, pp.125-129, 2005.

J. L. Flynn and J. Chan, Immunology of tuberculosis, Annu Rev Immunol, vol.19, pp.93-129, 2001.

T. Magcwebeba, A. Dorhoi, D. Plessis, and N. , The emerging role of myeloid-derived suppressor cells in tuberculosis, Front Immunol, vol.10, p.917, 2019.

M. C. Boer, S. A. Joosten, and T. H. Ottenhoff, Regulatory T-cells at the interface between human host and pathogens in infectious diseases and vaccination, Front Immunol, vol.6, p.217, 2015.

N. Isailovic, K. Daigo, A. Mantovani, and C. Selmi, Interleukin-17 and innate immunity in infections and chronic inflammation, J Autoimmun, vol.60, pp.1-11, 2015.

V. Greifenberg, E. Ribechini, S. Rossner, and M. B. Lutz, Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development, Eur J Immunol, vol.39, pp.2865-2876, 2009.

M. Jiang, J. Chen, W. Zhang, R. Zhang, Y. Ye et al., Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer, Front Immunol, vol.8, p.1840, 2017.

P. Miossec and J. K. Kolls, Targeting IL-17 and TH17 cells in chronic inflammation, Nat Rev Drug Discov, vol.11, pp.763-776, 2012.

B. R. Forbes, J. S. Wannan, and W. B. Kirkland, Indolent cutaneous ulceration due to infection with Mycobacterium ulcerans, Med J Aust, vol.41, pp.475-479, 1954.

S. Adusumilli, A. Mve-obiang, T. Sparer, W. Meyers, J. Hayman et al., Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo, Cell Microbiol, vol.7, pp.1295-1304, 2005.

J. Ogbechi, M. T. Ruf, B. S. Hall, K. Bodman-smith, M. Vogel et al., Mycolactone-dependent depletion of endothelial cell thrombomodulin is strongly associated with fibrin deposition in Buruli ulcer lesions, PLoS Pathog, vol.11, 2015.

K. M. George, L. Pascopella, D. M. Welty, and P. L. Small, A Mycobacterium ulcerans toxin, mycolactone, causes apoptosis in guinea pig ulcers and tissue culture cells, Infect Immun, vol.68, pp.877-883, 2000.

H. Hong, P. J. Gates, J. Staunton, T. Stinear, S. T. Cole et al., Identification using LC-MSn of co-metabolites in the biosynthesis of the polyketide toxin mycolactone by a clinical isolate of Mycobacterium ulcerans, Chem Commun (Camb), vol.22, pp.2822-2823, 2003.

U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, vol.227, pp.680-685, 1970.

T. Sekiya, J. Yamagishi, J. Gray, P. G. Whitney, A. Martinelli et al., PEGylation of a TLR2-agonist-based vaccine delivery system improves antigen trafficking and the magnitude of ensuing antibody and CD8 ? T cell responses, Biomaterials, vol.137, pp.61-72, 2017.

A. R. Wijayadikusumah, W. Zeng, H. A. Mcquilten, C. Y. Wong, D. C. Jackson et al., Geometry of a TLR2-agonist-based adjuvant can affect the resulting antigen-specific immune response, Mol Pharm, vol.16, pp.2037-2047, 2019.

B. Y. Chua, D. Pejoski, S. J. Turner, W. Zeng, and D. C. Jackson, Soluble proteins induce strong CD8 ? T cell and antibody responses through electrostatic association with simple cationic or anionic lipopeptides that target TLR2, J Immunol, vol.187, pp.1692-1701, 2011.

T. M. Beasley, S. Erickson, and A. Db, Rank-based inverse normal transformations are increasingly used, but are they merited?, Behav Genet, vol.39, pp.580-595, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: machine learning in Python, J Mach Learn Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. Pölsterl, P. Gupta, L. Wang, S. Conjeti, A. Katouzian et al., Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients, vol.5, p.2676, 1000.

L. Evers and C. M. Messow, Sparse kernel methods for high-dimensional survival data, Bioinformatics, vol.24, pp.1632-1638, 2008.

P. K. Shivaswamy, W. Chu, and M. Jansche, A support vector approach to censored targets, ICDM 2007: Proceedings of the Seventh IEEE International Conference on Data Mining, vol.28, 2007.

L. Van-der-maaten and G. Hinton, Visualizing data using t-SNE, J Mach Learn Res, vol.9, pp.2579-2605, 2008.

. R-core-team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, 2014.

M. Bolz, S. Kerber, G. Zimmer, and G. Pluschke, Use of recombinant virus replicon particles for vaccination against Mycobacterium ulcerans disease, PLoS Negl Trop Dis, vol.9, 2015.

F. Fenner, Homologous and heterologous immunity in infections of mice with Mycobacterium ulcerans and Mycobacterium balnei, Am Rev Tuberc, vol.76, pp.76-89, 1957.