N. Bernardes and A. M. Fialho, Perturbing the dynamics and organization of cell membrane components: a new paradigm for cancer-targeted therapies, Int. J. Mol. Sci, 2018.

D. Lingwood, H. J. Kaiser, I. Levental, and K. Simons, Lipid rafts as functional heterogeneity in cell membranes, Biochem. Soc. Trans, vol.37, pp.955-960, 2009.

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.387, pp.569-572, 1997.

J. R. Glenney and D. Soppet, Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts, Proc. Natl Acad. Sci. USA, vol.89, pp.10517-10521, 1992.

K. G. Rothberg, Caveolin a protein component of caveolae membrane coats, Cell, vol.68, pp.673-682, 1992.

C. Bionda, Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. Free Radic, Biol. Med, vol.43, pp.681-694, 2007.

J. P. Pouget, A. G. Georgakilas, and J. L. Ravanat, Targeted and off-target (Bystander and Abscopal) effects of radiation therapy: redox mechanisms and risk/benefit analysis, Antioxid. Redox Signal, vol.29, pp.1447-1487, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01785294

B. Stancevic and R. Kolesnick, Ceramide-rich platforms in transmembrane signaling, FEBS Lett, vol.584, pp.1728-1740, 2010.

I. Corre, M. Guillonneau, and F. Paris, Membrane signaling induced by high doses of ionizing radiation in the endothelial compartment. Relevance in radiation toxicity, Int J. Mol. Sci, vol.14, pp.22678-22696, 2013.

P. J. Quinn, Lipid-lipid interactions in bilayer membranes: married couples and casual liaisons, Prog. Lipid Res, vol.51, pp.179-198, 2012.

S. Zalba and T. L. Ten-hagen, Cell membrane modulation as adjuvant in cancer therapy, Cancer Treat. Rev, vol.52, pp.48-57, 2017.

X. Tekpli, J. A. Holme, O. Sergent, and D. Lagadic-gossmann, Role for membrane remodeling in cell death: implication for health and disease, Toxicology, vol.304, pp.141-157, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00818916

P. Zhang, Identification of genetic loci that control mammary tumor susceptibility through the host microenvironment, Sci. Rep, vol.5, p.8919, 2015.

E. S. Nakasone, Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance, Cancer Cell, vol.21, pp.488-503, 2012.

S. Furuta, C. M. Ghajar, and M. J. Bissell, Caveolin-1: would-be Achilles' heel of tumor microenvironment?, Cell Cycle, vol.10, p.3431, 2011.

P. A. Kenny, G. Y. Lee, and M. J. Bissell, Targeting the tumor microenvironment, Front. Biosci, vol.12, pp.3468-3474, 2007.

F. Paris, Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice, Science, vol.293, pp.293-297, 2001.

A. Wiesemann, Inhibition of radiation-induced Ccl2 signaling protects lungs from vascular dysfunction and endothelial cell loss, Antioxid. Redox Signal, vol.30, pp.213-231, 2019.

D. Klein, Endothelial Caveolin-1 regulates the radiation response of epithelial prostate tumors, Oncogenesis, vol.4, p.148, 2015.

D. Klein, The tumor vascular endothelium as decision maker in cancer therapy, Front. Oncol, vol.8, p.367, 2018.

E. Korpela and S. K. Liu, Endothelial perturbations and therapeutic strategies in normal tissue radiation damage, Radiat. Oncol, vol.9, p.266, 2014.

S. Bonnaud, Sphingosine-1-phosphate activates the AKT pathway to protect small intestines from radiation-induced endothelial apoptosis, Cancer Res, vol.70, pp.9905-9915, 2010.

I. Corre, F. Paris, and J. Huot, The p38 pathway, a major pleiotropic cascade that transduces stress and metastatic signals in endothelial cells, Oncotarget, vol.8, pp.55684-55714, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01550120

S. Dai, Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin, J. Proteome Res, vol.7, pp.4384-4395, 2008.

C. Niaudet, Plasma membrane reorganization links acid sphingomyelinase/ceramide to p38 MAPK pathways in endothelial cells apoptosis, Cell Signal, vol.33, pp.10-21, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01464136

R. Kolesnick and Z. Fuks, Radiation and ceramide-induced apoptosis, Oncogene, vol.22, pp.5897-5906, 2003.

A. Haimovitz-friedman, Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis, J. Exp. Med, vol.180, pp.525-535, 1994.

C. C. Niu, Identification of mesenchymal stem cells and osteogenic factors in bone marrow aspirate and peripheral blood for spinal fusion by flow cytometry and proteomic analysis, J. Orthop. Surg. Res, vol.9, p.32, 2014.

J. Ketteler and D. Klein, Caveolin-1, cancer and therapy resistance, Int J. Cancer, vol.143, pp.2092-2104, 2018.

J. Ketteler, Progression-related loss of stromal caveolin 1 levels mediates radiation resistance in prostate carcinoma via the apoptosis inhibitor TRIAP1, J. Clin. Med, 2019.

D. Vizio and D. , An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation, Cell Cycle, vol.8, pp.2420-2424, 2009.

G. Ayala, Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression, J. Pathol, vol.231, pp.77-87, 2013.

A. K. Witkiewicz, An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers, Am. J. Pathol, vol.174, pp.2023-2034, 2009.

M. I. Lin, J. Yu, T. Murata, and W. C. Sessa, Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res, vol.67, pp.2849-2856, 2007.

J. Dewever, Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment, Am. J. Pathol, vol.171, pp.1619-1628, 2007.

W. Zundel, L. M. Swiersz, and A. Giaccia, Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide, Mol. Cell. Biol, vol.20, pp.1507-1514, 2000.

A. Panic, Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance, Sci. Rep, vol.7, p.41138, 2017.

S. Bonnaud, Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death, Cancer Res, vol.67, pp.1803-1811, 2007.

P. Lajoie and I. R. Nabi, Lipid rafts, caveolae, and their endocytosis, Int. Rev. Cell Mol. Biol, vol.282, pp.135-163, 2010.

C. Yu, M. Alterman, and R. T. Dobrowsky, Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1, J. Lipid Res, vol.46, pp.1678-1691, 2005.

C. Caliceti, Role of plasma membrane caveolae/lipid rafts in VEGFinduced redox signaling in human leukemia cells, Biomed. Res. Int, p.857504, 2014.

J. Sawada, F. Li, and M. Komatsu, R-Ras inhibits VEGF-induced p38MAPK activation and HSP27 phosphorylation in endothelial cells, J. Vasc. Res, vol.52, pp.347-359, 2015.

H. Zhou, S. A. Summers, M. J. Birnbaum, and R. N. Pittman, Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis, J. Biol. Chem, vol.273, pp.16568-16575, 1998.

H. Sabbineni, Pharmacological inhibition of beta-catenin prevents EndMT in vitro and vascular remodeling in vivo resulting from endothelial Akt1 suppression, Biochem. Pharm, vol.164, pp.205-215, 2019.

T. Murata, Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice, J. Exp. Med, vol.204, pp.2373-2382, 2007.

C. Zheng, MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27, J. Biol. Chem, vol.281, pp.37215-37226, 2006.

M. J. Rane, Heat shock protein 27 controls apoptosis by regulating Akt activation, J. Biol. Chem, vol.278, pp.27828-27835, 2003.

D. Barzan, P. Maier, W. J. Zeller, F. Wenz, and C. Herskind, Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses, Strahlenther. Onkol, vol.186, pp.99-106, 2010.

N. Cordes, Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1, Oncogene, vol.26, pp.6851-6862, 2007.

S. Hehlgans and N. Cordes, Caveolin-1: an essential modulator of cancer cell radio-and chemoresistance, Am. J. Cancer Res, vol.1, pp.521-530, 2011.

S. Hehlgans, Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells, Radiother. Oncol, vol.92, pp.362-370, 2009.

B. Baselet, P. Sonveaux, S. Baatout, and A. Aerts, Pathological effects of ionizing radiation: endothelial activation and dysfunction, Cell Mol. Life Sci, vol.76, pp.699-728, 2019.

Z. Fuks and R. Kolesnick, Engaging the vascular component of the tumor response, Cancer Cell, vol.8, pp.89-91, 2005.

S. Sathishkumar, Elevated sphingomyelinase activity and ceramide concentration in serum of patients undergoing high dose spatially fractionated radiation treatment: implications for endothelial apoptosis, Cancer Biol. Ther, vol.4, pp.979-986, 2005.

S. N. Pinto, L. C. Silva, A. H. Futerman, and M. Prieto, Effect of ceramide structure on membrane biophysical properties: the role of acyl chain length and unsaturation, Biochim. Biophys. Acta, vol.1808, pp.2753-2760, 2011.

H. Lee, Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation, PLoS ONE, vol.6, p.19783, 2011.

M. Blaess, H. P. Le, R. A. Claus, M. Kohl, and H. P. Deigner, Stereospecific induction of apoptosis in tumor cells via endogenous C16-ceramide and distinct transcripts, Cell Death Discov, vol.1, p.15013, 2015.

T. Sassa, S. Suto, Y. Okayasu, and A. Kihara, A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells, Biochim. Biophys. Acta, vol.1821, pp.1031-1037, 2012.

M. Eto, C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells, Prostate, vol.57, pp.66-79, 2003.

L. Samsel, The ceramide analog, B13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts, Prostate, vol.58, pp.382-393, 2004.

S. Lansmann, Purification of acid sphingomyelinase from human placenta: characterization and N-terminal sequence, FEBS Lett, vol.399, pp.227-231, 1996.

C. Riccardi and I. Nicoletti, Analysis of apoptosis by propidium iodide staining and flow cytometry, Nat. Protoc, vol.1, pp.1458-1461, 2006.

M. Croyal, Fenofibrate decreases plasma ceramide in type 2 diabetes patients: a novel marker of CVD?, Diabetes Metab, vol.44, pp.143-149, 2018.

D. Klein, Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway, Hepatology, vol.47, pp.1018-1031, 2008.

S. Oeck, N. M. Malewicz, S. Hurst, J. Rudner, and V. Jendrossek, The Focinator-a new open-source tool for high-throughput foci evaluation of DNA damage, Radiat. Oncol, vol.10, p.163, 2015.