R. A. Lockshin and C. M. Williams, Programmed cell death-II. endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths, J Insect Physiol, vol.10, pp.643-652, 1964.

R. A. Lockshin and C. M. Williams, Programmed cell death-I. cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth, J Insect Physiol, vol.11, pp.123-156, 1965.

J. F. Kerr, A histochemical study of hypertrophy and ischaemic injury of rat liver with special reference to changes in lysosomes, J Pathol Bacteriol, vol.90, pp.419-454, 1965.

J. Schweichel and H. Merker, The morphology of various types of cell death in prenatal tissues, Teratology, vol.7, pp.253-66, 1973.

G. Kroemer, W. S. El-deiry, P. Golstein, M. E. Peter, D. Vaux et al., Classification of cell death: recommendations of the nomenclature committee on cell death, Cell Death Differ, vol.12, pp.1463-1470, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00407686

G. Y. Chen and G. Nuñez, Sterile inflammation: sensing and reacting to damage, Nat Rev Immunol, vol.10, pp.826-863, 2010.

Y. Shi, J. E. Evans, and K. L. Rock, Molecular identification of a danger signal that alerts the immune system to dying cells, Nature, vol.425, pp.516-537, 2003.

W. Land, H. Schneeberger, S. Schleibner, W. D. Illner, D. Abendroth et al., The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants, Transplantation, vol.57, pp.211-218, 1994.

P. Matzinger, Tolerance, danger, and the extended family, Annu Rev Immunol, vol.12, pp.991-1045, 1994.

S. Y. Seong and P. Matzinger, Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses, Nat Rev Immunol, vol.4, pp.469-78, 2004.

S. L. Robbins, L. Stanley, V. Kumar, and R. S. Cotran, Chap 1: Cellular responses to stress and toxic insults: adaptation, injury, and death, pp.6-11, 2010.

D. Sancho and C. Reis-e-sousa, Sensing of cell death by myeloid C-type lectin receptors, Curr Opin Immunol, vol.25, pp.46-52, 2013.

K. Drickamer, C-type lectin-like domains, Curr Opin Struct Biol, vol.9, pp.585-90, 1999.

K. Drickamer, Evolution of Ca(2+)-dependent animal lectins, Prog Nucleic Acid Res Mol Biol, vol.45, pp.207-239, 1993.

K. Drickamer and A. J. Fadden, Genomic analysis of C-type lectins, Biochem Soc Symp, vol.69, pp.59-72, 2002.

A. N. Zelensky and J. E. Gready, Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD), Proteins Struct Funct Genet, vol.52, pp.466-77, 2003.

C. Huysamen and G. D. Brown, The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors, FEMS Microbiol Lett, vol.290, pp.121-129, 2009.

B. Kerscher, J. A. Willment, and G. D. Brown, The Dectin-2 family of Ctype lectin-like receptors: an update, Int Immunol, vol.25, pp.271-278, 2013.

I. M. Dambuza and G. D. Brown, C-type lectins in immunity: recent developments, Curr Opin Immunol, vol.32, pp.21-28, 2015.

M. J. Robinson, D. Sancho, E. C. Slack, S. Leibundgut-landmann, R. Sousa et al., Myeloid C-type lectins in innate immunity, Nat Immunol, vol.7, pp.1258-65, 2006.

S. Yamasaki, E. Ishikawa, M. Sakuma, H. Hara, K. Ogata et al., Mincle is an ITAM-coupled activating receptor that senses damaged cells, Nat Immunol, vol.9, pp.1179-88, 2008.

A. S. Marshall, J. A. Willment, H. Lin, D. L. Williams, S. Gordon et al., Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes, J Biol Chem, vol.279, pp.14792-802, 2004.

D. Sancho, O. P. Joffre, A. M. Keller, N. C. Rogers, D. Martínez et al., Identification of a dendritic cell receptor that couples sensing of necrosis to immunity, Nature, vol.458, pp.899-903, 2009.

J. M. Gibbins, M. Okuma, R. Farndale, M. Barnes, and S. P. Watson, Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor ?-chain, FEBS Lett, vol.413, pp.255-264, 1997.

F. Osorio and C. Reis-e-sousa, Myeloid C-type lectin receptors in pathogen recognition and host defense, Immunity, vol.34, pp.651-64, 2011.

A. Mócsai, J. Ruland, and V. L. Tybulewicz, The SYK tyrosine kinase: a crucial player in diverse biological functions, Nat Rev Immunol, vol.10, pp.387-402, 2010.

J. Ostrop, K. Jozefowski, S. Zimmermann, K. Hofmann, E. Strasser et al., Contribution of MINCLE-SYK signaling to activation of primary human APCs by mycobacterial cord factor and the novel adjuvant TDB, J Immunol, vol.195, pp.2417-2445, 2015.

D. Strasser, K. Neumann, H. Bergmann, M. J. Marakalala, R. Guler et al., Syk kinase-coupled C-type lectin receptors engage protein kinase C-? to elicit Card9 adaptor-mediated innate immunity, Immunity, vol.36, pp.32-42, 2012.

S. Roth, H. Bergmann, M. Jaeger, A. Yeroslaviz, K. Neumann et al., Vav proteins are key regulators of Card9 signaling for innate antifungal immunity, Cell Rep, vol.17, pp.2572-83, 2016.

O. Gross, A. Gewies, K. Finger, M. Schäfer, T. Sparwasser et al., Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity, Nature, vol.442, pp.651-657, 2006.

S. I. Gringhuis, J. Den-dunnen, M. Litjens, M. Van-der-vlist, B. Wevers et al., Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-jB activation through Raf-1 and Syk, Nat Immunol, vol.10, pp.203-216, 2009.

R. A. Drummond and G. D. Brown, Signalling C-Type lectins in antimicrobial immunity, PLoS Pathog, vol.9, 2013.

S. Saijo, N. Fujikado, T. Furuta, S. H. Chung, H. Kotaki et al., Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans, Nat Immunol, vol.8, pp.39-46, 2007.

A. M. Kerrigan, G. Brown, A. Plato, J. A. Willment, and G. D. Brown, Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs, Int Rev Immunol, vol.234, pp.134-56, 2010.

E. Chiffoleau, C-Type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets, Front Immunol, vol.9, p.227, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01881149

C. Del-fresno, S. Iborra, P. Saz-leal, M. Martínez-lópez, and S. D. , Flexible signaling of myeloid C-type lectin receptors in immunity and inflammation, Front Immunol, vol.9, p.804, 2018.

D. Sancho and C. Reis-e-sousa, Signaling by myeloid C-type lectin receptors in immunity and homeostasis, Annu Rev Immunol, vol.30, pp.491-529, 2012.

T. Geijtenbeek and S. I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses, Nat Rev Immunol, vol.9, pp.465-79, 2009.

J. J. García-vallejo, V. Kooyk, and Y. , Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis, Immunol Rev, vol.230, pp.22-37, 2009.

A. Cambi and C. Figdor, Necrosis: C-Type lectins sense cell death, Curr Biol, vol.19, pp.375-383, 2009.

H. Yan, T. Kamiya, P. Suabjakyong, and N. M. Tsuji, Targeting C-type lectin receptors for cancer immunity, Front Immunol, vol.6, p.408, 2015.

K. Bode, F. Bujupi, C. Link, T. Hein, S. Zimmermann et al., Dectin-1 binding to annexins on apoptotic cells induces peripheral immune tolerance via NADPH oxidase-2, Cell Rep, vol.29, pp.4435-4481, 2019.

S. Yamanaka, X. Y. Zhang, K. Miura, S. Kim, and H. Iwao, The human gene encoding the lectin-type oxidized LDL receptor (OLR1) is a novel member of the natural killer gene complex with a unique expression profile, Genomics, vol.54, pp.191-200, 1998.

T. Nickel, D. Schmauss, H. Hanssen, Z. Sicic, B. Krebs et al., oxLDL uptake by dendritic cells induces upregulation of scavengerreceptors, maturation and differentiation, Atherosclerosis, vol.205, pp.442-50, 2009.

T. Sawamura, N. Kume, T. Aoyama, H. Moriwaki, H. Hoshikawa et al., An endothelial receptor for oxidized low-density lipoprotein, Nature, vol.386, pp.73-80, 1997.

H. Yoshida, N. Kondratenko, S. Green, D. Steinberg, and O. Quehenberger, Identification of the lectin-like receptor for oxidized low-density lipoprotein in human macrophages and its potential role as a scavenger receptor, Biochem J, vol.334, pp.9-13, 1998.

H. M. Joo, D. Li, M. Dullaers, T. W. Kim, D. Duluc et al., C-Type lectin-like receptor LOX-1 promotes dendritic cell-mediated class-switched B cell responses, Immunity, vol.41, pp.592-604, 2014.

T. Aoyama, M. Chen, H. Fujiwara, T. Masaki, and T. Sawamura, LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL uptake in smooth muscle cells, FEBS Lett, vol.467, pp.217-237, 2000.

G. Draude and R. L. Lorenz, TGF-?1 downregulates CD36 and scavenger receptor a but upregulates LOX-1 in human macrophages, Am J Physiol Circ Physiol, vol.278, pp.1042-1050, 2000.

Y. Delneste, G. Magistrelli, J. Gauchat, J. Haeuw, A. Nakamura et al., Involvement of LOX-1 in dendritic cellmediated antigen cross-presentation, Immunity, vol.17, pp.353-62, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-02459032

J. E. Murphy, R. S. Vohra, S. Dunn, Z. G. Holloway, A. P. Monaco et al., Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2, J Cell Sci, vol.121, pp.2136-2183, 2008.

P. Jeannin, B. Bottazzi, M. Sironi, A. Doni, M. Rusnati et al., Complexity and complementarity of outer membrane protein a recognition by cellular and humoral innate immunity receptors, Immunity, vol.22, pp.551-60, 2005.

H. Morawietz, U. Rueckschloss, B. Niemann, N. Duerrschmidt, J. Galle et al., Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein, Circulation, vol.100, pp.899-902, 1999.

H. Morawietz, N. Duerrschmidt, B. Niemann, J. Galle, T. Sawamura et al., Induction of the OxLDL receptor LOX-1 by endothelin-1 in human endothelial cells, Biochem Biophys Res Commun, vol.284, pp.961-966, 2001.

L. Pérez, A. Vallejos, C. Echeverria, D. Varela, C. Cabello-verrugio et al., OxHDL controls LOX-1 expression and plasma membrane localization through a mechanism dependent on NOX/ROS/NF-?B pathway on endothelial cells, Lab Invest, vol.99, pp.421-458, 2019.

K. Oka, T. Sawamura, K. Kikuta, S. Itokawa, N. Kume et al., Lectinlike oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells, Proc Natl Acad Sci, vol.95, pp.9535-9575, 1998.

M. Chen, M. Nagase, T. Fujita, S. Narumiya, T. Masaki et al., Diabetes enhances lectin-like oxidized LDL Receptor-1 (LOX-1) expression in the vascular endothelium: possible role of LOX-1 ligand and AGE, Biochem Biophys Res Commun, vol.287, pp.962-970, 2001.

T. Shimaoka, N. Kume, M. Minami, K. Hayashida, T. Sawamura et al., LOX-1 supports adhesion of gram-positive and gram-negative bacteria, J Immunol, vol.166, pp.5108-5122, 2001.

J. Xie, H. Zhu, L. Guo, Y. Ruan, L. Wang et al., Lectin-like oxidized lowdensity lipoprotein receptor-1 delivers heat shock protein 60-fused antigen into the MHC class I presentation pathway, J Immunol, vol.185, pp.2306-2319, 2010.

M. Kakutani, T. Masaki, and T. Sawamura, A platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1, Proc Natl Acad Sci, vol.97, pp.360-364, 2000.

I. V. Smirnova, M. Kajstura, T. Sawamura, and M. S. Goligorsky, Asymmetric dimethylarginine upregulates LOX-1 in activated macrophages: role in foam cell formation, Am J Physiol Hear Circ Physiol, vol.287, pp.782-90, 2004.

T. Mentrup, K. Theodorou, F. Cabrera-cabrera, A. O. Helbig, K. Happ et al., Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis, J Exp Med, vol.216, pp.807-837, 2019.

K. Hashimoto, Y. Oda, F. Nakamura, R. Kakinoki, and M. Akagi, Lectin-like, oxidized low-density lipoprotein receptor-1-deficient mice show resistance to age-related knee osteoarthritis, Eur J Histochem, vol.61, p.2762, 2017.

M. A. De-vries, B. Klop, H. W. Janssen, T. L. Njo, E. M. Westerman et al., Postprandial inflammation: targeting glucose and lipids, Adv Exp Med Biol, vol.824, pp.161-70, 2014.

S. W. Shiu, Y. Wong, and K. C. Tan, Effect of advanced glycation end products on lectin-like oxidized low density lipoprotein receptor-1 expression in endothelial cells, J Atheroscler Thromb, vol.19, pp.1083-92, 2012.

T. Murase, N. Kume, H. Kataoka, M. Minami, T. Sawamura et al., Identification of soluble forms of lectin-like oxidized LDL receptor-1, Arterioscler Thromb Vasc Biol, vol.20, pp.715-735, 2000.

K. C. Tan, S. W. Shiu, Y. Wong, L. Leng, and R. Bucala, Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus, J Lipid Res, vol.49, pp.1438-1482, 2008.

C. Li, J. Zhang, H. Wu, L. Li, C. Yang et al., Lectin-like oxidized lowdensity lipoprotein receptor-1 facilitates metastasis of gastric cancer through driving epithelial-mesenchymal transition and PI3K/Akt/GSK3? activation. Sci Rep, vol.7, p.45275, 2017.

M. Murdocca, R. Mango, S. Pucci, S. Biocca, B. Testa et al., The lectin-like oxidized LDL receptor-1: a new potential molecular target in colorectal cancer, Oncotarget, vol.7, pp.14765-80, 2016.

I. González-chavarría, R. P. Cerro, N. P. Parra, F. A. Sandoval, F. A. Zuñiga et al., Lectin-like oxidized LDL receptor-1 is an enhancer of tumor angiogenesis in human prostate cancer cells, PLoS ONE, vol.9, p.106219, 2014.

M. Liang, P. Zhang, and J. Fu, Up-regulation of LOX-1 expression by TNF-? promotes trans-endothelial migration of MDA-MB-231 breast cancer cells, Cancer Lett, vol.258, pp.31-38, 2007.

T. Condamine, D. I. Gabrilovich, G. A. Dominguez, J. Youn, A. V. Kossenkov et al., Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients, Sci Immunol, vol.1, p.8943, 2016.

S. Parlato, G. Romagnoli, F. Spadaro, I. Canini, P. Sirabella et al., LOX-1 as a natural IFN-?-mediated signal for apoptotic cell uptake and antigen presentation in dendritic cells, Blood, vol.115, pp.1554-63, 2010.

A. Lobato-pascual, P. C. Saether, S. Fossum, E. Dissen, and M. R. Daws, Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and Fc?RI-?, Eur J Immunol, vol.43, pp.3167-74, 2013.

M. Matsumoto, T. Tanaka, T. Kaisho, H. Sanjo, N. G. Copeland et al., A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages, J Immunol, vol.163, pp.5039-5087, 1999.

M. Ichioka, T. Suganami, N. Tsuda, I. Shirakawa, Y. Hirata et al., Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans, Diabetes, vol.60, pp.819-845, 2011.

L. L. Lv, P. Tang, C. J. Li, Y. K. You, J. Li et al., The pattern recognition receptor, Mincle, is essential for maintaining the M1 macrophage phenotype in acute renal inflammation, Kidney Int, vol.91, pp.587-602, 2017.

Y. Miyake, O. Masatsugu, S. Yamasaki, and . C-, Type lectin receptor MCL facilitates mincle expression and signaling through complex formation, J Immunol, vol.194, pp.5366-74, 2015.

S. H. Greco, S. K. Mahmood, A. Vahle, A. Ochi, J. Batel et al., Mincle suppresses Toll-like receptor 4 activation, J Leukoc Biol, vol.100, pp.185-94, 2016.

S. H. Greco, A. Torres-hernandez, A. Kalabin, C. Whiteman, R. Rokosh et al., Mincle signaling promotes con a hepatitis, J Immunol, vol.197, pp.2816-2843, 2016.

A. V. Kostarnoy, P. G. Gancheva, B. Lepenies, A. I. Tukhvatulin, A. S. Dzharullaeva et al., Receptor Mincle promotes skin allergies and is capable of recognizing cholesterol sulfate, Proc Natl Acad Sci, vol.114, pp.2758-65, 2017.

Y. Suzuki, Y. Nakano, K. Mishiro, T. Takagi, K. Tsuruma et al., Involvement of Mincle and Syk in the changes to innate immunity after ischemic stroke, Sci Rep, vol.3, p.3177, 2013.

J. C. De-rivero-vaccari, F. J. Brand, A. F. Berti, O. F. Alonso, M. R. Bullock et al., Mincle signaling in the innate immune response after traumatic brain injury, J Neurotrauma, vol.32, pp.228-264, 2015.

N. Nakamura, Y. Shimaoka, T. Tougan, H. Onda, D. Okuzaki et al., Isolation and expression profiling of genes upregulated in bone marrowderived mononuclear cells of rheumatoid arthritis patients, DNA Res, vol.13, pp.169-83, 2006.

M. N'diaye, S. Brauner, S. Flytzani, L. Kular, A. Warnecke et al., C-type lectin receptors Mcl and Mincle control development of multiple sclerosis-like neuroinflammation, J Clin Invest, vol.30, pp.838-52, 2019.

X. Y. Wu, J. P. Guo, F. R. Yin, X. L. Lu, R. Li et al., Macrophage-inducible C-type lectin is associated with anti-cyclic citrullinated peptide antibodiespositive rheumatoid arthritis in men, Chin Med J, vol.125, pp.3115-3124, 2012.

E. Ishikawa, T. Ishikawa, Y. S. Morita, K. Toyonaga, H. Yamada et al., Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle, J Exp Med, vol.206, pp.2879-88, 2009.

B. K. Das, L. Xia, L. Palandjian, O. Gozani, Y. Chyung et al., Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155, Mol Cell Biol, vol.19, pp.6796-802, 1999.

M. Nagata, Y. Izumi, E. Ishikawa, R. Kiyotake, R. Doi et al., Intracellular metabolite ?-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity, Proc Natl Acad Sci, vol.114, pp.3285-94, 2017.

R. Kiyotake, M. Oh-hora, E. Ishikawa, T. Miyamoto, T. Ishibashi et al., Human Mincle binds to cholesterol crystals and triggers innate immune responses, J Biol Chem, vol.290, pp.25322-25354, 2015.

C. Honjoh, K. Chihara, H. Yoshiki, S. Yamauchi, K. Takeuchi et al., Association of C-Type lectin Mincle with Fc?RI?? subunits leads to functional activation of RBL-2H3 cells through, Syk. Sci Rep, vol.7, p.46064, 2017.

W. B. Lee, J. S. Kang, J. J. Yan, M. S. Lee, B. Y. Jeon et al., Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the mincle pathway, PLoS Pathog, vol.8, p.1002614, 2012.

W. B. Lee, J. S. Kang, W. Y. Choi, Q. Zhang, C. H. Kim et al.,

, Mincle-mediated translational regulation is required for strong nitric oxide production and inflammation resolution, Nat Commun, vol.7, pp.1-14, 2016.

K. Werninghaus, A. Babiak, O. Gross, C. Hölscher, H. Dietrich et al., Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRgamma-Syk-Card9-dependent innate immune activation, J Exp Med, vol.206, pp.89-97, 2009.

H. Schoenen, B. Bodendorfer, K. Hitchens, S. Manzanero, K. Werninghaus et al., Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate, J Immunol, vol.184, pp.2756-60, 2010.

E. C. Patin, S. J. Orr, and U. E. Schaible, Macrophage inducible C-Type lectin as a multifunctional player in immunity. Front Immunol, vol.8, p.861, 2017.

H. Kataoka, H. Kono, Z. Patel, and K. L. Rock, Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses, PLoS ONE, vol.9, p.104741, 2014.

K. J. Strissel, Z. Stancheva, H. Miyoshi, J. W. Perfield, J. Defuria et al., Adipocyte death, adipose tissue remodeling, and obesity complications, Diabetes, vol.56, pp.2910-2918, 2007.

S. Cinti, G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi et al., Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans, J Lipid Res, vol.46, pp.2347-55, 2005.

A. Ishikawa, Y. Miyake, K. Kobayashi, Y. Murata, S. Iizasa et al., Essential roles of C-type lectin Mincle in induction of neuropathic pain in mice, Sci Rep, vol.9, p.872, 2019.

L. Seifert, G. Werba, S. Tiwari, G. Ly, N. N. Alothman et al., The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression, Nature, vol.532, pp.245-254, 2016.

S. Iborra, M. Martínez-lópez, F. J. Cueto, R. Conde-garrosa, D. Fresno et al., Leishmania uses Mincle to target an inhibitory ITAM signaling pathway in dendritic cells that dampens adaptive immunity to infection, Immunity, vol.45, pp.788-801, 2016.

B. A. Wevers, T. M. Kaptein, E. M. Zijlstra-willems, B. Theelen, T. Boekhout et al., Fungal engagement of the C-Type lectin Mincle suppresses Dectin-1-induced antifungal immunity, Cell Host Microbe, vol.15, pp.494-505, 2014.

K. Neumann, M. Castiñeiras-vilariño, U. Höckendorf, N. Hannesschläger, S. Lemeer et al., Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death, Immunity, vol.40, pp.389-99, 2014.

T. J. Hutten, S. Thordardottir, H. Fredrix, L. Janssen, R. Woestenenk et al., CLEC12A-mediated antigen uptake and cross-presentation by human dendritic cell subsets efficiently boost tumor-reactive T cell responses, J Immunol, vol.197, pp.2715-2740, 2016.

L. Hao, J. Klein, and M. Nei, Heterogeneous but conserved natural killer receptor gene complexes in four major orders of mammals, Proc Natl Acad Sci, vol.103, pp.3192-3199, 2006.

A. S. Marshall, J. A. Willment, E. Pyz, K. M. Dennehy, D. M. Reid et al., Human MICL (CLEC12A) is differentially glycosylated and is downregulated following cellular activation, Eur J Immunol, vol.36, pp.2159-69, 2006.

C. Chen, H. Floyd, N. E. Olson, D. Magaletti, C. Li et al., Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendriticcell maturation and cytokine production, Blood, vol.107, pp.1459-67, 2006.

M. H. Lahoud, A. I. Proietto, A. F. Kitsoulis, S. Eidsmo, L. Wu et al., The C-Type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses, J Immunol, vol.182, pp.7587-94, 2009.

L. M. Morsink, R. B. Walter, and G. J. Ossenkoppele, Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia, Blood Rev, vol.34, pp.26-33, 2019.

E. Pyz, C. Huysamen, A. S. Marshall, S. Gordon, P. R. Taylor et al., Characterisation of murine MICL (CLEC12A) and evidence for an endogenous ligand, Eur J Immunol, vol.38, pp.1157-63, 2008.

V. Gagné, L. Marois, J. Levesque, H. Galarneau, M. H. Lahoud et al., Modulation of monosodium urate crystal-induced responses in neutrophils by the myeloid inhibitory C-type lectin-like receptor: potential therapeutic implications, Arthritis Res Ther, vol.15, p.73, 2013.

P. Redelinghuys, L. Whitehead, A. Augello, R. A. Drummond, J. M. Levesque et al., MICL controls inflammation in rheumatoid arthritis, Ann Rheum Dis, vol.75, pp.1386-91, 2016.

K. Li, K. Neumann, V. Duhan, S. Namineni, A. L. Hansen et al., The uric acid crystal receptor Clec12A potentiates type I interferon responses, Proc Natl Acad Sci, p.201821351, 2019.

E. B. Wilson, D. H. Yamada, H. Elsaesser, J. Herskovitz, J. Deng et al., Blockade of chronic type I interferon signaling to control persistent LCMV infection, Science, vol.340, pp.202-209, 2013.

J. R. Teijaro, C. Ng, A. M. Lee, B. M. Sullivan, K. C. Sheehan et al., Persistent LCMV infection is controlled by blockade of type I interferon signaling, Science, vol.340, pp.207-218, 2013.

A. Troegeler, I. Mercier, C. Cougoule, D. Pietretti, A. Colom et al., Ctype lectin receptor DCIR modulates immunity to tuberculosis by sustaining type I interferon signaling in dendritic cells, Proc Natl Acad Sci, vol.114, pp.540-549, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02348507

K. Crozat, S. Tamoutounour, T. Vu-manh, E. Fossum, H. Luche et al., Cutting edge: expression of XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8? + Type, J Immunol, vol.187, pp.4411-4416, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00672203

S. Gurka, E. Hartung, M. Becker, and R. A. Kroczek, Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRP?, Front Immunol, vol.6, p.35, 2015.

B. U. Schraml, J. Van-blijswijk, S. Zelenay, P. G. Whitney, A. Filby et al., Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage, Cell, vol.154, pp.843-58, 2013.

G. Schreibelt, L. J. Klinkenberg, L. J. Cruz, P. J. Tacken, J. Tel et al., The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3 myeloid dendritic cells, Blood, vol.119, pp.2284-92, 2012.

C. Huysamen, J. A. Willment, K. M. Dennehy, and G. D. Brown, CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes, J Biol Chem, vol.283, pp.16693-701, 2008.

D. Sancho, D. Mourão-sá, O. P. Joffre, O. Schulz, N. C. Rogers et al., Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin, J Clin Invest, vol.118, pp.2098-110, 2008.

P. Han?, T. Fujii, S. Iborra, Y. Yamada, J. Huotari et al., Structure of the complex of F-Actin and DNGR-1, a C-Type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens, Immunity, vol.42, pp.839-888, 2015.

S. Ahrens, S. Zelenay, D. Sancho, P. Han?, S. Kjaer et al., F-Actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells, Immunity, vol.36, pp.635-680, 2012.

S. Zelenay, A. M. Keller, P. G. Whitney, B. U. Schraml, S. Deddouche et al., The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice, J Clin Invest, vol.122, pp.1615-1642, 2012.

O. Schulz, P. Han?, J. P. Böttcher, R. Hoogeboom, S. S. Diebold et al., Myosin II synergizes with F-Actin to promote DNGR-1-dependent crosspresentation of dead cell-associated antigens, Cell Rep, vol.24, pp.419-447, 2018.

S. Iborra, H. M. Izquierdo, M. Martínez-lópez, N. Blanco-menéndez, C. Reis-e-sousa et al., The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice, J Clin Invest, vol.122, pp.1628-1671, 2012.

S. Iborra, M. Martínez-lópez, S. C. Khouili, M. Enamorado, F. J. Cueto et al., Optimal generation of tissue-resident but not circulating memory T Cells during viral infection requires crosspriming by DNGR-1+ dendritic cells, Immunity, vol.45, pp.847-60, 2016.

Y. Haddad, C. Lahoute, M. Clément, L. Laurans, S. Metghalchi et al., The dendritic cell receptor DNGR-1 promotes the development of atherosclerosis in mice, Circ Res, vol.121, pp.234-277, 2017.

C. Del-fresno, P. Saz-leal, M. Enamorado, S. K. Wculek, S. Martínez-cano et al., DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment, Science, vol.362, pp.351-357, 2018.

S. Zelenay and C. Reis-e-sousa, Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy, Radogna F, Diederich M, vol.34, pp.12-23, 2013.

M. Aleynick, J. Svensson-arvelund, C. R. Flowers, A. Marabelle, and J. D. Brody, Pathogen molecular pattern receptor agonists: treating cancer by mimicking infection, Clin Cancer Res, vol.25, p.1800, 2019.

J. Aretz, E. Wamhoff, J. Hanske, D. Heymann, and C. Rademacher, Computational and experimental prediction of human C-type lectin receptor druggability, Front Immunol, vol.5, p.323, 2014.