M. Gerlinger, A. J. Rowan, S. Horswell, M. Math, J. Larkin et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing, N. Engl. J. Med, vol.366, pp.883-892, 2012.

M. Gerlinger, S. Horswell, J. Larkin, A. J. Rowan, M. P. Salm et al., Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing, Nat. Genet, vol.46, pp.225-233, 2014.

S. C. Ren, M. Qu, and Y. H. Sun, Investigating intratumour heterogeneity by single-cell sequencing, Asian J. Androl, vol.15, pp.729-734, 2013.

L. A. Carey, E. C. Dees, L. Sawyer, L. Gatti, D. T. Moore et al., The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes, Clin. Cancer Res, vol.13, pp.2329-2334, 2007.

A. R. Burke, R. N. Singh, D. L. Carroll, J. C. Wood, R. B. Agostino et al., The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy, Biomaterials, vol.33, pp.2961-2970, 2012.

M. Varna, G. Gapihan, J. P. Feugeas, P. Ratajczak, S. Tan et al., Stem cells increase in numbers in perinecrotic areas in human renal cancer, Clin. Cancer Res, vol.21, pp.916-924, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02142795

G. Bousquet, M. El-bouchtaoui, T. Sophie, C. Leboeuf, C. De-bazelaire et al., Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer, Oncotarget, vol.8, pp.35205-35221, 2017.

J. Hu, W. Guan, P. Liu, J. Dai, K. Tang et al., Endoglin Is Essential for the Maintenance of Self-Renewal and Chemoresistance in Renal Cancer Stem Cells, Stem Cell Rep, vol.9, pp.464-477, 2017.

M. F. Clarke, J. E. Dick, P. B. Dirks, C. J. Eaves, C. H. Jamieson et al., Cancer stem cells-Perspectives on current status and future directions: AACR Workshop on cancer stem cells, Cancer Res, vol.66, pp.9339-9344, 2006.

J. E. Dick, Looking ahead in cancer stem cell research, Nat. Biotechnol, vol.27, pp.44-46, 2009.

R. L. Atkinson, M. Zhang, P. Diagaradjane, S. Peddibhotla, A. Contreras et al., Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy, Sci. Transl. Med, vol.2, 2010.

M. Li, B. Zhang, Z. Zhang, X. Liu, X. Qi et al., Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer, Biomed. Res. Int, p.981261, 2014.

, Int. J. Mol. Sci, vol.19, pp.4036-4048, 2018.

M. J. Kwon and Y. K. Shin, Regulation of ovarian cancer stem cells or tumor-initiating cells, Int. J. Mol. Sci, vol.14, pp.6624-6648, 2013.

P. Dalerba, R. W. Cho, and M. F. Clarke, Cancer stem cells: Models and concepts, Annu. Rev. Med, vol.58, pp.267-284, 2007.

M. Dean, T. Fojo, and S. Bates, Tumour stem cells and drug resistance, Nat. Rev. Cancer, vol.5, pp.275-284, 2005.

J. D. Lathia, J. M. Heddleston, M. Venere, and J. N. Rich, Deadly teamwork: Neural cancer stem cells and the tumor microenvironment, Cell Stem Cell, vol.8, pp.482-485, 2011.

N. Charles, T. Ozawa, M. Squatrito, A. M. Bleau, C. W. Brennan et al., Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells, Cell Stem Cell, vol.6, pp.141-152, 2010.

L. Schito and G. L. Semenza, Hypoxia-Inducible Factors: Master Regulators of Cancer Progression, Trends Cancer, vol.2, pp.758-770, 2016.

D. Lee, S. Sun, A. S. Ho, K. M. Kiang, X. Q. Zhang et al., Hyperoxia resensitizes chemoresistant glioblastoma cells to temozolomide through unfolded protein response, Anticancer Res, vol.34, pp.2957-2966, 2014.

I. Moen, A. M. Oyan, K. H. Kalland, K. J. Tronstad, L. A. Akslen et al., Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model, PLoS ONE, vol.4, p.6381, 2009.

A. M. Bleau, D. Hambardzumyan, T. Ozawa, E. I. Fomchenko, J. T. Huse et al., PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells, Cell Stem Cell, vol.4, pp.226-235, 2009.

R. R. Begicevic and M. Falasca, ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance, Int. J. Mol. Sci, vol.18, p.2362, 2017.

R. J. Kathawala, P. Gupta, C. R. Ashby, . Jr, and Z. S. Chen, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade, Drug Resist. Updates, vol.18, pp.1-17, 2015.

L. Huang, C. Hu, M. Di-benedetto, R. Varin, J. Liu et al., Cross-drug resistance to sunitinib induced by doxorubicin in endothelial cells, Oncol. Lett, vol.9, pp.1287-1292, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02378731

L. Huang, C. Perrault, J. Coelho-martins, C. Hu, C. Dulong et al., Induction of acquired drug resistance in endothelial cells and its involvement in anticancer therapy, J. Hematol. Oncol, vol.6, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00845842

F. Ricci, S. Bernasconi, P. Perego, M. Ganzinelli, G. Russo et al., Ovarian carcinoma tumor-initiating cells have a mesenchymal phenotype, Cell Cycle, vol.11, pp.1966-1976, 2012.

S. Zhang, C. Balch, M. W. Chan, H. C. Lai, D. Matei et al., Identification and characterization of ovarian cancer-initiating cells from primary human tumors, Cancer Res, vol.68, pp.4311-4320, 2008.

J. A. Kruger, C. D. Kaplan, Y. Luo, H. Zhou, D. Markowitz et al., Characterization of stem cell-like cancer cells in immune-competent mice, Blood, vol.108, pp.3906-3912, 2006.

H. L. Chang, D. T. Maclaughlin, and P. K. Donahoe, Somatic stem cells of the ovary and their relationship to human ovarian cancers, StemBook; Harvard Stem Cell Institute, 2008.

M. Boesch, A. G. Zeimet, D. Reimer, S. Schmidt, G. Gastl et al., The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics, Oncotarget, vol.5, pp.7027-7039, 2014.

P. P. Szotek, R. Pieretti-vanmarcke, P. T. Masiakos, D. M. Dinulescu, D. Connolly et al., Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness, Proc. Natl. Acad. Sci, vol.103, pp.11154-11159, 2006.

N. Haraguchi, T. Utsunomiya, H. Inoue, F. Tanaka, K. Mimori et al., Characterization of a side population of cancer cells from human gastrointestinal system, Stem Cells, vol.24, pp.506-513, 2006.

, Int. J. Mol. Sci, vol.19, pp.4036-4049, 2018.

T. Kondo, T. Setoguchi, and T. Taga, Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line, Proc. Natl. Acad. Sci, vol.101, pp.781-786, 2004.

G. M. Seigel, L. M. Campbell, M. Narayan, and F. Gonzalez-fernandez, Cancer stem cell characteristics in retinoblastoma, Mol. Vis, vol.11, pp.729-737, 2005.

K. Yasuda, T. Torigoe, R. Morita, T. Kuroda, A. Takahashi et al., Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population, PLoS ONE, vol.8, 2013.

Y. C. Lim, T. L. Roberts, B. W. Day, A. Harding, S. Kozlov et al., A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells, Mol. Cancer Ther, vol.11, pp.1863-1872, 2012.

M. Yuan, C. G. Eberhart, and M. Kai, RNA binding protein RBM14 promotes radio-resistance in glioblastoma by regulating DNA repair and cell differentiation, Oncotarget, vol.5, pp.2820-2826, 2014.

M. Venere, P. Hamerlik, Q. Wu, R. D. Rasmussen, L. A. Song et al., Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells, Cell Death Differ, vol.21, pp.258-269, 2014.

A. K. Srivastava, C. Han, R. Zhao, T. Cui, Y. Dai et al., Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells, Proc. Natl. Acad. Sci, vol.112, pp.4411-4416, 2015.

Y. Yang-hartwich, M. G. Soteras, Z. P. Lin, J. Holmberg, N. Sumi et al., p53 protein aggregation promotes platinum resistance in ovarian cancer, Oncogene, vol.34, pp.3605-3616, 2015.

I. Vitale, G. Manic, R. De-maria, G. Kroemer, and L. Galluzzi, DNA Damage in Stem Cells, Mol. Cell, vol.66, pp.306-319, 2017.

K. A. Gelmon, M. Tischkowitz, H. Mackay, K. Swenerton, A. Robidoux et al., Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study, Lancet Oncol, vol.12, pp.852-861, 2011.

J. Ledermann, P. Harter, C. Gourley, M. Friedlander, I. Vergote et al., Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, N. Engl. J. Med, vol.366, pp.1382-1392, 2012.

M. Robson, S. A. Im, E. Senkus, B. Xu, S. M. Domchek et al., Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation, N. Engl. J. Med, vol.377, pp.523-533, 2017.

T. Shimo, J. Kurebayashi, N. Kanomata, T. Yamashita, Y. Kozuka et al., Antitumor and anticancer stem cell activity of a poly ADP-ribose polymerase inhibitor olaparib in breast cancer cells, Breast Cancer, vol.21, pp.75-85, 2014.

J. Balmana, N. M. Tung, S. J. Isakoff, B. Grana, P. D. Ryan et al., Phase, I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors, Ann. Oncol, vol.25, pp.1656-1663, 2014.

L. Tourneau, C. Dreno, B. Kirova, Y. Grob, J. J. Jouary et al., First-in-human phase, I study of the DNA-repair inhibitor DT01 in combination with radiotherapy in patients with skin metastases from melanoma, Br. J. Cancer, vol.114, pp.1199-1205, 2016.

M. Nieborowska-skorska, K. Sullivan, Y. Dasgupta, P. Podszywalow-bartnicka, G. Hoser et al., Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells, J. Clin. Investig, vol.127, pp.2392-2406, 2017.

G. Karpel-massler, F. Pareja, P. Aime, C. Shu, L. Chau et al., PARP inhibition restores extrinsic apoptotic sensitivity in glioblastoma, PLoS ONE, vol.9, 2014.

M. Gilabert, S. Launay, C. Ginestier, F. Bertucci, S. Audebert et al., ADP-ribose) polymerase 1 (PARP1) overexpression in human breast cancer stem cells and resistance to olaparib, PLoS ONE, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01431935

, Int. J. Mol. Sci, vol.19, pp.4036-4050, 2018.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat. Rev. Cancer, vol.2, pp.442-454, 2002.

L. Verneuil, C. Leboeuf, G. Bousquet, C. Brugiere, M. Elbouchtaoui et al., Donor-derived stem-cells and epithelial mesenchymal transition in squamous cell carcinoma in transplant recipients, Oncotarget, vol.6, pp.41497-41507, 2015.

D. R. Pattabiraman and R. A. Weinberg, Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy, Cold Spring Harb. Symp. Quant. Biol, vol.81, pp.11-19, 2016.

B. Du and J. S. Shim, Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer, Molecules, vol.21, p.965, 2016.

K. Polireddy, R. Dong, P. R. Mcdonald, T. Wang, B. Luke et al., Targeting Epithelial-Mesenchymal Transition for Identification of Inhibitors for Pancreatic Cancer Cell Invasion and Tumor Spheres Formation, PLoS ONE, vol.11, 2016.

S. Y. Lee, E. K. Jeong, M. K. Ju, H. M. Jeon, M. Y. Kim et al., Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation, Mol. Cancer, vol.16, issue.10, 2017.

A. Jayachandran, B. Dhungel, and J. C. Steel, Epithelial-to-mesenchymal plasticity of cancer stem cells: Therapeutic targets in hepatocellular carcinoma, J. Hematol. Oncol, vol.9, 2016.

G. Bousquet, M. El-bouchtaoui, C. Leboeuf, M. Battistella, M. Varna et al., Tracking sub-clonal TP53 mutated tumor cells in human metastatic renal cell carcinoma, Oncotarget, vol.6, pp.19279-19289, 2015.

D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen et al., In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship, Clin. Cancer Res, vol.9, pp.327-337, 2003.

G. Bousquet, M. Varna, I. Ferreira, L. Wang, P. Mongiat-artus et al., Differential regulation of sunitinib targets predicts its tumor-type-specific effect on endothelial and/or tumor cell apoptosis, Cancer Chemother. Pharmacol, vol.72, pp.1183-1193, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02142772

L. S. Fournier, S. Oudard, R. Thiam, L. Trinquart, E. Banu et al., Metastatic renal carcinoma: Evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT, Radiology, vol.256, pp.511-518, 2010.

R. J. Motzer, T. E. Hutson, P. Tomczak, M. D. Michaelson, R. M. Bukowski et al., Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma, J. Clin. Oncol, vol.27, pp.3584-3590, 2009.

B. Beuselinck, S. Job, E. Becht, A. Karadimou, V. Verkarre et al., Molecular subtypes of clear cell renal cell carcinoma are associated with sunitinib response in the metastatic setting, Clin. Cancer Res, vol.21, pp.1329-1339, 2015.

J. Folkman and Y. Shing, Angiogenesis. J. Biol. Chem, vol.267, pp.10931-10934, 1992.

W. Xiao, Z. Gao, Y. Duan, W. Yuan, and Y. Ke, Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma, J. Exp. Clin. Cancer Res, vol.36, p.41, 2017.

M. K. Mohammed, C. Shao, J. Wang, Q. Wei, X. Wang et al., Wnt/beta-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance, Genes Dis, vol.3, pp.11-40, 2016.

T. Bekaii-saab and B. El-rayes, Identifying and targeting cancer stem cells in the treatment of gastric cancer, vol.123, pp.1303-1312, 2017.

W. H. Matsui, Cancer stem cell signaling pathways, Medicine, vol.2016, pp.8-19

A. A. Merchant and W. Matsui, Targeting Hedgehog-A cancer stem cell pathway, Clin. Cancer Res, vol.16, pp.3130-3140, 2010.

, Int. J. Mol. Sci, vol.19, pp.4036-4051, 2018.

M. E. Hutchin, M. S. Kariapper, M. Grachtchouk, A. Wang, L. Wei et al., Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: Conditional skin tumorigenesis recapitulates the hair growth cycle, Genes Dev, vol.19, pp.214-223, 2005.

V. Clement, P. Sanchez, N. De-tribolet, I. Radovanovic, and A. R. Altaba, HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity, Curr. Biol, vol.17, pp.165-172, 2007.

F. Varnat, A. Duquet, M. Malerba, M. Zbinden, C. Mas et al., Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion, EMBO Mol. Med, vol.1, pp.338-351, 2009.

A. M. Cook, L. Li, Y. Ho, A. Lin, L. Li et al., Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells, Blood, vol.123, pp.2826-2837, 2014.

M. M. Sherry, A. Reeves, J. K. Wu, and B. H. Cochran, STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells, Stem Cells, vol.27, pp.2383-2392, 2009.

P. Ranganathan, K. L. Weaver, and A. J. Capobianco, Notch signalling in solid tumours: A little bit of everything but not all the time, Nat. Rev. Cancer, vol.11, pp.338-351, 2011.

E. V. Abel, E. J. Kim, J. Wu, M. Hynes, F. Bednar et al., The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer, PLoS ONE, vol.9, 2014.

Z. Wang, T. G. Da-silva, K. Jin, X. Han, P. Ranganathan et al., Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma, Cancer Res, vol.74, pp.6364-6374, 2014.

J. Wang, T. P. Wakeman, J. D. Lathia, A. B. Hjelmeland, X. F. Wang et al., Notch promotes radioresistance of glioma stem cells, Stem Cells, vol.28, pp.17-28, 2010.

P. Polakis, Wnt signaling in cancer, Cold Spring Harb. Perspect. Biol, vol.4, 2012.

I. Malanchi, H. Peinado, D. Kassen, T. Hussenet, D. Metzger et al., Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling, Nature, vol.452, pp.650-653, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00283101

G. B. Jang, J. Y. Kim, S. D. Cho, K. S. Park, J. Y. Jung et al., Blockade of Wnt/beta-catenin signaling suppresses breast cancer metastasis by inhibiting CSC-like phenotype, Sci. Rep, vol.5, 2015.

W. K. Chau, C. K. Ip, A. S. Mak, H. C. Lai, and A. S. Wong, c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATP-binding cassette G2 signaling, Oncogene, vol.32, pp.2767-2781, 2013.

L. Duan, L. Ye, R. Wu, H. Wang, X. Li et al., Inactivation of the phosphatidylinositol 3-kinase/Akt pathway is involved in BMP9-mediated tumor-suppressive effects in gastric cancer cells, J. Cell. Biochem, vol.116, pp.1080-1089, 2015.

H. Yuzugullu, L. Baitsch, T. Von, A. Steiner, H. Tong et al., A PI3K p110beta-Rac signalling loop mediates Pten-loss-induced perturbation of haematopoiesis and leukaemogenesis, Nat. Commun, vol.6, 2015.

I. Bahena-ocampo, M. Espinosa, G. Ceballos-cancino, F. Lizarraga, D. Campos-arroyo et al., MiR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation, EMBO Rep, vol.17, 1081.

N. Takebe, L. Miele, P. J. Harris, W. Jeong, H. Bando et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update, Nat. Rev. Clin. Oncol, vol.12, pp.445-464, 2015.

N. E. Bhola, V. M. Jansen, J. P. Koch, H. Li, L. Formisano et al., Treatment of Triple-Negative Breast Cancer with TORC1/2 Inhibitors Sustains a Drug-Resistant and Notch-Dependent Cancer Stem Cell Population, Cancer Res, vol.76, pp.440-452, 2016.

M. S. Hayden and S. Ghosh, Shared principles in NF-kappaB signaling, Cell, vol.132, pp.344-362, 2008.

, Int. J. Mol. Sci, vol.19, pp.4036-4052, 2018.

S. Prasad, J. Ravindran, and B. B. Aggarwal, NF-kappaB and cancer: How intimate is this relationship, Mol. Cell. Biochem, vol.336, pp.25-37, 2010.

S. J. Stein and A. S. Baldwin, Deletion of the NF-kappaB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function, Blood, vol.121, pp.5015-5024, 2013.

C. Zhao, Y. Xiu, J. Ashton, L. Xing, Y. Morita et al., Noncanonical NF-kappaB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions, Stem Cells, vol.30, pp.709-718, 2012.

C. Chen, F. Cao, L. Bai, Y. Liu, J. Xie et al., IKKbeta Enforces a LIN28B/TCF7L2 Positive Feedback Loop That Promotes Cancer Cell Stemness and Metastasis, Cancer Res, vol.75, pp.1725-1735, 2015.

M. Liu, T. Sakamaki, M. C. Casimiro, N. E. Willmarth, A. A. Quong et al., The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion, Cancer Res, vol.70, pp.10464-10473, 2010.

V. Hoff, D. D. Lorusso, P. M. Rudin, C. M. Reddy, J. C. Yauch et al., Inhibition of the hedgehog pathway in advanced basal-cell carcinoma, N. Engl. J. Med, vol.361, pp.1164-1172, 2009.

C. Yoon, D. J. Park, B. Schmidt, N. J. Thomas, H. J. Lee et al., CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance, Clin. Cancer Res, vol.20, pp.3974-3988, 2014.

A. Sekulic, M. R. Migden, A. E. Oro, L. Dirix, K. D. Lewis et al., Efficacy and safety of vismodegib in advanced basal-cell carcinoma, N. Engl. J. Med, vol.366, pp.2171-2179, 2012.

A. E. Sloan, C. J. Nock, X. Ye, A. Kerstetter, J. Supko et al., Targeting glioma-initiating cells in GBM: ABTC-0904, a randomized phase 0/II study targeting the Sonic Hedgehog-signaling pathway, J. Clin. Oncol, vol.32, 2014.

Y. Li, H. A. Rogoff, S. Keates, Y. Gao, S. Murikipudi et al., Suppression of cancer relapse and metastasis by inhibiting cancer stemness, Proc. Natl. Acad. Sci, vol.112, pp.1839-1844, 2015.

Y. Zhang, Z. Jin, H. Zhou, X. Ou, Y. Xu et al., Suppression of prostate cancer progression by cancer cell stemness inhibitor napabucasin, Cancer Med, vol.5, pp.1251-1258, 2016.

M. A. Shah, K. Muro, K. Shitara, N. C. Tebbutt, Y. Bang et al., The BRIGHTER trial: A phase III randomized double-blind study of BBI608 + weekly paclitaxel versus placebo (PBO) + weekly paclitaxel in patients (pts) with pretreated advanced gastric and gastro-esophageal junction (GEJ) adenocarcinoma, J. Clin. Oncol, p.33, 2015.

M. B. Sonbol and T. Bekaii-saab, A clinical trial protocol paper discussing the BRIGHTER study, Future Oncol, vol.14, pp.901-906, 2018.

D. J. Jonker, L. Nott, T. Yoshino, S. Gill, J. Shapiro et al., A randomized phase III study of napabucasin [BBI608] (NAPA) vs. placebo (PBO) in patients (pts) with pretreated advanced colorectal cancer (ACRC): The CCTG/AGITG CO.23 trial, Ann. Oncol, vol.2016

S. Takaishi, T. Okumura, S. Tu, S. S. Wang, W. Shibata et al., Identification of gastric cancer stem cells using the cell surface marker CD44, Stem Cells, vol.27, pp.1006-1020, 2009.

C. Li, D. G. Heidt, P. Dalerba, C. F. Burant, L. Zhang et al., Identification of pancreatic cancer stem cells, Cancer Res, vol.67, pp.1030-1037, 2007.

M. E. Prince, R. Sivanandan, A. Kaczorowski, G. T. Wolf, M. J. Kaplan et al., Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma, Proc. Natl. Acad. Sci, vol.104, pp.973-978, 2007.

A. B. Alvero, R. Chen, H. H. Fu, M. Montagna, P. E. Schwartz et al., Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance, Cell Cycle, vol.8, pp.158-166, 2009.

, Int. J. Mol. Sci, vol.19, pp.4036-4053, 2018.

P. H. Nguyen, J. Giraud, C. Staedel, L. Chambonnier, P. Dubus et al., All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth, Oncogene, vol.35, pp.5619-5628, 2016.

P. Chen, H. F. Huang, R. Lu, Y. Wu, and Y. Z. Chen, Prognostic significance of CD44v6/v7 in acute promyelocytic leukemia. Asian Pac, J. Cancer Prev, vol.13, pp.3791-3794, 2012.

B. Bao, S. Ali, A. Ahmad, Y. Li, S. Banerjee et al., Differentially expressed miRNAs in cancer-stem-like cells: Markers for tumor cell aggressiveness of pancreatic cancer, Stem Cells Dev, vol.23, pp.1947-1958, 2014.

L. Vermeulen, M. Todaro, F. De-sousa-mello, M. R. Sprick, K. Kemper et al., Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity, Proc. Natl. Acad. Sci, vol.105, pp.13427-13432, 2008.

C. H. Yang, H. L. Wang, Y. S. Lin, K. P. Kumar, H. C. Lin et al., Identification of CD24 as a cancer stem cell marker in human nasopharyngeal carcinoma, PLoS ONE, vol.9, 2014.

M. Al-hajj, M. S. Wicha, A. Benito-hernandez, S. J. Morrison, and M. F. Clarke, Prospective identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci, vol.100, pp.3983-3988, 2003.

L. Yu, S. Liu, W. Guo, B. Zhang, Y. Liang et al., Upregulation of Mad2 facilitates in vivo and in vitro osteosarcoma progression, Oncol. Rep, vol.28, pp.2170-2176, 2012.

M. Miettinen and J. Lasota, KIT (CD117): A review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation, Appl. Immunohistochem. Mol. Morphol, vol.13, pp.205-220, 2005.

L. Luo, J. Zeng, B. Liang, Z. Zhao, L. Sun et al., Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome, Exp. Mol. Pathol, vol.91, pp.596-602, 2011.

S. H. Chiou, C. C. Yu, C. Y. Huang, S. C. Lin, C. J. Liu et al., Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma, Clin. Cancer Res, vol.14, pp.4085-4095, 2008.

T. Baba, P. A. Convery, N. Matsumura, R. S. Whitaker, E. Kondoh et al., Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells, Oncogene, vol.28, pp.209-218, 2009.

M. D. Curley, V. A. Therrien, C. L. Cummings, P. A. Sergent, C. R. Koulouris et al., CD133 expression defines a tumor initiating cell population in primary human ovarian cancer, Stem Cells, vol.27, pp.2875-2883, 2009.

D. J. Vander-griend, W. L. Karthaus, S. Dalrymple, A. Meeker, A. M. Demarzo et al., The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells, Cancer Res, vol.68, pp.9703-9711, 2008.

Y. Jiang, Y. He, H. Li, H. N. Li, L. Zhang et al., Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer, Gastric Cancer, vol.15, pp.440-450, 2012.

K. Hashimoto, K. Aoyagi, T. Isobe, K. Kouhuji, and K. Shirouzu, Expression of CD133 in the cytoplasm is associated with cancer progression and poor prognosis in gastric cancer, Gastric Cancer, vol.17, pp.97-106, 2014.

X. L. Chen, X. Z. Chen, Y. G. Wang, D. He, Z. H. Lu et al., Clinical significance of putative markers of cancer stem cells in gastric cancer: A retrospective cohort study, Oncotarget, vol.7, pp.62049-62069, 2016.

P. H. Nguyen, J. Giraud, L. Chambonnier, P. Dubus, L. Wittkop et al., Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma, Clin. Cancer Res, vol.23, pp.1586-1597, 2017.

S. H. Chiou, C. L. Kao, Y. W. Chen, C. S. Chien, S. C. Hung et al., Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor, PLoS ONE, vol.3, 2008.

K. K. Velpula, V. R. Dasari, A. J. Tsung, D. H. Dinh, and J. S. Rao, Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1, Oncotarget, vol.2, pp.1028-1042, 2011.

, Int. J. Mol. Sci, vol.19, pp.4036-4054, 2018.

M. Q. Gao, Y. P. Choi, S. Kang, J. H. Youn, and N. H. Cho, CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells, Oncogene, vol.29, pp.2672-2680, 2010.

Y. Katsuno, S. Ehata, M. Yashiro, K. Yanagihara, K. Hirakawa et al., Coordinated expression of REG4 and aldehyde dehydrogenase 1 regulating tumourigenic capacity of diffuse-type gastric carcinoma-initiating cells is inhibited by TGF-beta, J. Pathol, vol.228, pp.391-404, 2012.

Y. Deng, J. Zhou, L. Fang, Y. Cai, J. Ke et al., ALDH1 is an independent prognostic factor for patients with stages II-III rectal cancer after receiving radiochemotherapy, Br. J. Cancer, vol.110, pp.430-434, 2014.

I. A. Silva, S. Bai, K. Mclean, K. Yang, K. Griffith et al., Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival, Cancer Res, vol.71, pp.3991-4001, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01431946

N. A. Satar, K. S. Fakiruddin, M. N. Lim, P. L. Mok, N. Zakaria et al., Novel triplepositive markers identified in human nonsmall cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics, Oncol. Rep, vol.40, pp.669-681, 2018.

I. Cherciu, A. Barbalan, D. Pirici, C. Margaritescu, and A. Saftoiu, Stem cells, colorectal cancer and cancer stem cell markers correlations, Curr. Health Sci. J, vol.40, pp.153-161, 2014.

T. Fujita, F. Chiwaki, R. U. Takahashi, K. Aoyagi, K. Yanagihara et al., Identification and Characterization of CXCR4-Positive Gastric Cancer Stem Cells, PLoS ONE, vol.10, 2015.

L. Y. Sun, D. K. Hsieh, W. S. Syu, Y. S. Li, H. T. Chiu et al., Cell proliferation of human bone marrow mesenchymal stem cells on biodegradable microcarriers enhances in vitro differentiation potential, Cell Prolif, vol.43, pp.445-456, 2010.

K. Yasumoto, K. Koizumi, A. Kawashima, Y. Saitoh, Y. Arita et al., Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer, Cancer Res, vol.66, pp.2181-2187, 2006.

R. S. Taichman, C. Cooper, E. T. Keller, K. J. Pienta, N. S. Taichman et al., Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone, Cancer Res, vol.62, pp.1832-1837, 2002.

M. Jager, A. Schoberth, P. Ruf, J. Hess, M. Hennig et al., Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3), Cancer Res, vol.72, pp.24-32, 2012.

K. Meirelles, L. A. Benedict, D. Dombkowski, D. Pepin, F. I. Preffer et al., Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance, Proc. Natl. Acad. Sci, vol.109, pp.2358-2363, 2012.

B. Bussolati, S. Bruno, C. Grange, U. Ferrando, and G. Camussi, Identification of a tumor-initiating stem cell population in human renal carcinomas, FASEB J, vol.22, pp.3696-3705, 2008.

D. Hu, X. Wang, Y. Mao, and L. Zhou, Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma, J. Neurooncol, vol.106, pp.505-517, 2012.

A. J. Ziebarth, S. Nowsheen, A. D. Steg, M. M. Shah, A. A. Katre et al., Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer, Clin. Cancer Res, vol.19, pp.170-182, 2013.

X. F. Zhang, D. S. Weng, K. Pan, Z. Q. Zhou, Q. Z. Pan et al., Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells, Mol. Carcinog, vol.56, pp.2499-2511, 2017.

T. Chen, K. Yang, J. Yu, W. Meng, D. Yuan et al., Identification and expansion of cancer stem cells in tumor tissues and peripheral blood derived from gastric adenocarcinoma patients, Cell Res, vol.22, pp.248-258, 2012.

, Int. J. Mol. Sci, vol.19, pp.4036-4055, 2018.

C. W. Fan, T. Chen, Y. N. Shang, Y. Z. Gu, S. L. Zhang et al., Cancer-initiating cells derived from human rectal adenocarcinoma tissues carry mesenchymal phenotypes and resist drug therapies

M. Ohkuma, N. Haraguchi, H. Ishii, K. Mimori, F. Tanaka et al., Absence of CD71 transferrin receptor characterizes human gastric adenosquamous carcinoma stem cells, Ann. Surg. Oncol, vol.19, pp.1357-1364, 2012.

X. Gong, A. Azhdarinia, S. C. Ghosh, W. Xiong, Z. An et al., LGR5-Targeted Antibody-Drug Conjugate Eradicates Gastrointestinal Tumors and Prevents Recurrence, Mol. Cancer Ther, vol.15, pp.1580-1590, 2016.

Z. X. Zheng, Y. Sun, Z. D. Bu, L. H. Zhang, Z. Y. Li et al., Intestinal stem cell marker LGR5 expression during gastric carcinogenesis, World J. Gastroenterol, vol.19, pp.8714-8721, 2013.

D. R. Yang, X. F. Ding, J. Luo, Y. X. Shan, R. Wang et al., Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer, J. Biol. Chem, vol.288, pp.16476-16483, 2013.

Z. Chen, W. R. Xu, H. Qian, W. Zhu, X. F. Bu et al., Oct4, a novel marker for human gastric cancer, J. Surg. Oncol, vol.99, pp.414-419, 2009.

Y. Kobayashi, K. Seino, S. Hosonuma, T. Ohara, H. Itamochi et al., Side population is increased in paclitaxel-resistant ovarian cancer cell lines regardless of resistance to cisplatin, Gynecol. Oncol, vol.121, pp.390-394, 2011.

D. Naor, S. B. Wallach-dayan, M. A. Zahalka, and R. V. Sionov, Involvement of CD44, a molecule with a thousand faces, in cancer dissemination, Semin. Cancer Biol, vol.18, pp.260-267, 2008.

H. Ponta, L. Sherman, and P. A. Herrlich, From adhesion molecules to signalling regulators, Nat. Rev. Mol. Cell Biol, vol.4, pp.33-45, 2003.

A. Mielgo, M. Van-driel, A. Bloem, L. Landmann, and U. Gunthert, A novel antiapoptotic mechanism based on interference of Fas signaling by CD44 variant isoforms, Cell Death Differ, vol.13, pp.465-477, 2006.

J. M. Louderbough and J. A. Schroeder, Understanding the dual nature of CD44 in breast cancer progression, Mol. Cancer Res, vol.9, pp.1573-1586, 2011.

E. J. Yun, J. Zhou, C. J. Lin, E. Hernandez, L. Fazli et al., Targeting Cancer Stem Cells in Castration-Resistant Prostate Cancer, Clin. Cancer Res, vol.22, pp.670-679, 2016.

P. Chu, D. J. Clanton, T. S. Snipas, J. Lee, E. Mitchell et al., Characterization of a subpopulation of colon cancer cells with stem cell-like properties, Int. J. Cancer, vol.124, pp.1312-1321, 2009.

D. Chen, M. Wu, Y. Li, I. Chang, Q. Yuan et al., Targeting BMI1(+) Cancer Stem Cells Overcomes Chemoresistance and Inhibits Metastases in Squamous Cell Carcinoma, Cell Stem Cell, vol.20, pp.621-634, 2017.

C. Bonneau, R. Rouzier, C. Geyl, A. Cortez, M. Castela et al., Predictive markers of chemoresistance in advanced stages epithelial ovarian carcinoma, Gynecol. Oncol, vol.136, pp.112-120, 2015.

Y. Gao, R. Foster, X. Yang, Y. Feng, J. K. Shen et al., Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer, Oncotarget, vol.6, pp.9313-9326, 2015.

M. Todaro, M. Gaggianesi, V. Catalano, A. Benfante, F. Iovino et al., CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis, Cell Stem Cell, vol.14, pp.342-356, 2014.

D. S. Alberts, P. Y. Liu, S. P. Wilczynski, A. Jang, J. Moon et al., Phase, I.I. Trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211), Int. J. Gynecol. Cancer, vol.17, pp.784-788, 2007.

J. Neuzil, M. Stantic, R. Zobalova, J. Chladova, X. Wang et al., Tumour-initiating cells vs. cancer 'stem' cells and CD133: What's in the name?, Biochem. Biophys. Res. Commun, vol.355, pp.855-859, 2007.

, Int. J. Mol. Sci, vol.19, p.24, 2018.

J. Zhang, X. Guo, D. Y. Chang, D. G. Rosen, I. Mercado-uribe et al., CD133 expression associated with poor prognosis in ovarian cancer, Mod. Pathol, vol.25, pp.456-464, 2012.

D. Y. Hueng, H. K. Sytwu, S. M. Huang, C. Chang, and H. I. Ma, Isolation and characterization of tumor stem-like cells from human meningiomas, J. Neurooncol, vol.104, pp.45-53, 2011.

N. Mehra, M. Penning, J. Maas, L. V. Beerepoot, N. Van-daal et al., Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases, Clin. Cancer Res, vol.12, pp.4859-4866, 2006.

J. Huang, C. Li, Y. Wang, H. Lv, Y. Guo et al., Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies target CD133(high) cancer stem cells in vitro and in vivo, Clin. Immunol, vol.149, pp.156-168, 2013.

W. Chen, F. Li, Z. M. Xue, and H. R. Wu, Anti-human CD133 monoclonal antibody that could inhibit the proliferation of colorectal cancer cells, Hybridoma, vol.29, pp.305-310, 2010.

M. Sato-dahlman, Y. Miura, J. L. Huang, P. Hajeri, K. Jacobsen et al., CD133-targeted oncolytic adenovirus demonstrates anti-tumor effect in colorectal cancer, Oncotarget, vol.8, pp.76044-76056, 2017.

J. S. Kim, D. H. Shin, and J. S. Kim, Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells, J. Control, vol.269, pp.245-257, 2018.

D. Burgos-ojeda, R. Wu, K. Mclean, Y. C. Chen, M. Talpaz et al., CD24+ Ovarian Cancer Cells Are Enriched for Cancer-Initiating Cells and Dependent on JAK2 Signaling for Growth and Metastasis, Mol. Cancer Ther, vol.14, pp.1717-1727, 2015.

P. Gunjal, D. Pedziwiatr, A. A. Ismail, S. S. Kakar, and M. Z. Ratajczak, An emerging question about putative cancer stem cells in established cell lines-are they true stem cells or a fluctuating cell phenotype?, J. Cancer Stem Cell Res, vol.3, 2015.

J. Zhu, G. Zhang, H. Lu, and . Cd24, COX-2, and p53 in epithelial ovarian cancer and its clinical significance, Front. Biosci, vol.4, pp.2645-2651, 2012.

E. Meng, B. Long, P. Sullivan, S. Mcclellan, M. A. Finan et al., CD44+/CD24? ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival, Clin. Exp. Metastasis, vol.29, pp.939-948, 2012.

F. Sun, T. Wang, J. Jiang, Y. Wang, Z. Ma et al., Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design, Oncotarget, vol.8, pp.51238-51252, 2017.

P. Marcato, C. A. Dean, C. A. Giacomantonio, and P. W. Lee, Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform, Cell Cycle, vol.10, pp.1378-1384, 2011.

S. Liu, C. Liu, X. Min, Y. Ji, N. Wang et al., Prognostic value of cancer stem cell marker aldehyde dehydrogenase in ovarian cancer: A meta-analysis, PLoS ONE, vol.8, 2013.

C. N. Landen, . Jr, B. Goodman, A. A. Katre, A. D. Steg et al., Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer, Mol. Cancer Ther, vol.9, pp.3186-3199, 2010.

M. Munz, P. A. Baeuerle, and O. Gires, The emerging role of EpCAM in cancer and stem cell signaling, Cancer Res, vol.69, pp.5627-5629, 2009.

S. Bellone, E. R. Siegel, E. Cocco, M. Cargnelutti, D. A. Silasi et al., Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer: Implications for epithelial cell adhesion molecule-specific immunotherapy, Int. J. Gynecol. Cancer, vol.19, pp.860-866, 2009.

J. Deng, L. Wang, H. Chen, J. Hao, J. Ni et al., Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer, Oncotarget, vol.7, pp.55771-55788, 2016.

M. Y. Liao, J. K. Lai, M. Y. Kuo, R. M. Lu, C. W. Lin et al., An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer, Oncotarget, vol.6, pp.24947-24968, 2015.

M. Schlaak, P. Schmidt, C. Bangard, P. Kurschat, C. Mauch et al., Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells, Oncotarget, vol.3, pp.22-30, 2012.

, Int. J. Mol. Sci, vol.19, pp.4036-4057, 2018.

C. Corro and H. Moch, Biomarker discovery for renal cancer stem cells, J. Pathol. Clin. Res, vol.4, pp.3-18, 2018.

B. Cheng, G. Yang, R. Jiang, Y. Cheng, H. Yang et al., Cancer stem cell markers predict a poor prognosis in renal cell carcinoma: A meta-analysis, Oncotarget, vol.7, pp.65862-65875, 2016.

T. K. Choueiri, M. D. Michaelson, E. M. Posadas, G. P. Sonpavde, D. F. Mcdermott et al., An Open Label Phase Ib Dose Escalation Study of TRC105 (Anti-Endoglin Antibody) with Axitinib in Patients with Metastatic Renal Cell Carcinoma, Oncologist, 2018.

A. G. Duffy, C. Ma, S. V. Ulahannan, O. E. Rahma, O. Makarova-rusher et al., Phase I and Preliminary Phase II Study of TRC105 in Combination with Sorafenib in Hepatocellular Carcinoma, Clin. Cancer Res, vol.23, pp.4633-4641, 2017.

F. H. Karzai, A. B. Apolo, L. Cao, R. A. Madan, D. E. Adelberg et al., A phase I. study of TRC105 anti-endoglin (CD105) antibody in metastatic castration-resistant prostate cancer, BJU Int, vol.116, pp.546-555, 2015.

A. B. Apolo, F. H. Karzai, J. B. Trepel, S. Alarcon, S. Lee et al., A Phase, II Clinical Trial of TRC105 (Anti-Endoglin Antibody) in Adults With Advanced/Metastatic Urothelial Carcinoma, Clin. Genitourin. Cancer, vol.15, pp.77-85, 2017.

M. S. Gordon, F. Robert, D. Matei, D. S. Mendelson, J. W. Goldman et al., An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer, Clin. Cancer Res, vol.20, pp.5918-5926, 2014.

L. Verneuil, M. Varna, P. Ratajczak, C. Leboeuf, L. F. Plassa et al., Human skin carcinoma arising from kidney transplant-derived tumor cells, J. Clin. Investig, vol.123, pp.3797-3801, 2013.

L. Verneuil, M. Varna, C. Leboeuf, L. F. Plassa, M. Elbouchtaoui et al., Donor-derived keratinocytes in actinic keratosis and squamous cell carcinoma in patients with kidney transplant, J. Investig. Dermatol, vol.133, pp.1108-1111, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01397779

V. Torchilin, Nanotechnology in Drugs, 2008.

A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, Nanoparticles as drug delivery systems, Pharmacol. Rep, vol.64, pp.1020-1037, 2012.

N. D. James, R. J. Coker, D. Tomlinson, J. R. Harris, M. Gompels et al., Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi's sarcoma in AIDS, Clin. Oncol, vol.6, pp.294-296, 1994.

T. M. Allen and P. R. Cullis, Liposomal drug delivery systems: From concept to clinical applications, Adv. Drug Deliv. Rev, vol.65, pp.36-48, 2013.

W. J. Gradishar, S. Tjulandin, N. Davidson, H. Shaw, N. Desai et al., Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer, J. Clin. Oncol, vol.23, pp.7794-7803, 2005.

T. Sun, Y. S. Zhang, B. Pang, D. C. Hyun, M. Yang et al., Engineered nanoparticles for drug delivery in cancer therapy, Angew. Chem. Int. Ed. Engl, vol.53, pp.12320-12364, 2014.

D. W. Deamer, From "banghasomes" to liposomes: A memoir of Alec Bangham, FASEB J, vol.24, pp.1308-1310, 2010.

S. Batzri and E. D. Korn, Single bilayer liposomes prepared without sonication, Biochim. Biophys. Acta, vol.298, pp.1015-1019, 1973.

G. Gregoriadis and B. E. Ryman, Liposomes as carriers of enzymes or drugs: A new approach to the treatment of storage diseases, Biochem. J, vol.124, 1971.

A. Kumari, S. K. Yadav, and S. C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Colloids Surf. B Biointerfaces, vol.75, pp.1-18, 2010.

L. G. Martins, N. M. Khalil, and R. M. Mainardes, PLGA Nanoparticles and Polysorbate-80-Coated PLGA Nanoparticles Increase the In vitro Antioxidant Activity of Melatonin, Curr. Drug Deliv, vol.15, pp.554-563, 2018.

, Int. J. Mol. Sci, vol.19, pp.4036-4058, 2018.

F. M. Veronese and G. Pasut, PEGylation, successful approach to drug delivery, Drug Discov. Today, vol.10, pp.1451-1458, 2005.

A. R. Thierry, A. Rahman, and A. Dritschilo, A new procedure for the preparation of liposomal doxorubicin: Biological activity in multidrug-resistant tumor cells, Cancer Chemother. Pharmacol, vol.35, pp.84-88, 1994.

N. Blank, I. Laskov, R. Kessous, L. Kogan, S. Lau et al., Absence of cardiotoxicity with prolonged treatment and large accumulating doses of pegylated liposomal doxorubicin, Cancer Chemother. Pharmacol, vol.80, pp.737-743, 2017.

D. E. Lopes-de-menezes, L. M. Pilarski, and T. M. Allen, In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma, Cancer Res, vol.58, pp.3320-3330, 1998.

J. W. Park, K. Hong, D. B. Kirpotin, G. Colbern, R. Shalaby et al., Anti-HER2 immunoliposomes: Enhanced efficacy attributable to targeted delivery, Clin. Cancer Res, vol.8, pp.1172-1181, 2002.

I. H. El-sayed, X. Huang, and M. A. El-sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Lett, vol.239, pp.129-135, 2006.

H. W. Kao, Y. Y. Lin, C. C. Chen, K. H. Chi, D. C. Tien et al., Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model, Nanotechnology, vol.25, p.295102, 2014.

M. Zhang, H. S. Kim, T. Jin, and W. K. Moon, Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer, J. Photochem. Photobiol. B, vol.170, pp.58-64, 2017.

I. Pereira, F. Sousa, P. Kennedy, and B. Sarmento, Carcinoembryonic antigen-targeted nanoparticles potentiate the delivery of anticancer drugs to colorectal cancer cells, Int. J. Pharm, vol.549, pp.397-403, 2018.

S. Hammarstrom, The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues, Semin. Cancer Biol, vol.9, pp.67-81, 1999.

I. Bhatti, M. Patel, A. R. Dennison, M. W. Thomas, and G. Garcea, Utility of postoperative CEA for surveillance of recurrence after resection of primary colorectal cancer, Int. J. Surg, vol.16, pp.123-128, 2015.

M. Varna, P. Ratajczak, I. Ferreira, C. Leboeuf, G. Bousquet et al., In vivo Distribution of Inorganic Nanoparticles in Preclinical Models, J. Biomater. Nanobiotechnol, vol.3, pp.269-279, 2012.

M. Pannerec-varna, P. Ratajczak, G. Bousquet, I. Ferreira, C. Leboeuf et al., In vivo uptake and cellular distribution of gold nanoshells in a preclinical model of xenografted human renal cancer, vol.46, pp.257-265, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02316735

P. Singh, S. Pandit, V. Mokkapati, A. Garg, V. Ravikumar et al., Gold Nanoparticles in Diagnostics and Therapeutics for Human Cancer, Int. J. Mol. Sci, vol.19, 1979.

E. S. Day, J. G. Morton, and J. L. West, Nanoparticles for thermal cancer therapy, J. Biomech. Eng, vol.131, p.74001, 2009.

E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-sayed, H. Chu et al., Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett, vol.269, pp.57-66, 2008.

J. L. Roti-roti, Cellular responses to hyperthermia (40-46 degrees C): Cell killing and molecular events, Int. J. Hyperth, vol.24, pp.3-15, 2008.

C. D. Kowal and J. R. Bertino, Possible benefits of hyperthermia to chemotherapy, Cancer Res, vol.39, pp.2285-2289, 1979.

J. M. Classe, O. Glehen, E. Decullier, J. M. Bereder, S. Msika et al., Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for First Relapse of Ovarian Cancer, Anticancer Res, vol.35, pp.4997-5005, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02326390

M. R. Meijerink, R. S. Puijk, A. Van-tilborg, K. H. Henningsen, L. G. Fernandez et al., Radiofrequency and Microwave Ablation Compared to Systemic Chemotherapy and to Partial Hepatectomy in the Treatment of Colorectal Liver Metastases: A Systematic Review and Meta-Analysis, Cardiovasc. Interv. Radiol, vol.41, pp.1189-1204, 2018.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, Selective cell targeting with light-absorbing microparticles and nanoparticles, Biophys. J, vol.84, pp.4023-4032, 2003.

D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit et al., Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol, vol.2, pp.751-760, 2007.

Y. Liang, W. Gao, X. Peng, X. Deng, C. Sun et al., Near infrared light responsive hybrid nanoparticles for synergistic therapy, Biomaterials, vol.100, pp.76-90, 2016.

M. M. El-hammadi, A. V. Delgado, C. Melguizo, J. C. Prados, and J. L. Arias, Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil, Int. J. Pharm, vol.516, pp.61-70, 2017.

A. Dadwal, A. Baldi, and R. Kumar-narang, Nanoparticles as carriers for drug delivery in cancer, Artif. Cells Nanomed. Biotechnol, pp.1-11, 2018.

D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich et al., Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science, vol.235, pp.177-182, 1987.

N. Niikura, J. Liu, N. Hayashi, E. A. Mittendorf, Y. Gong et al., Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors, J. Clin. Oncol, vol.30, pp.593-599, 2012.

J. Baselga, J. Cortes, S. B. Kim, S. A. Im, R. Hegg et al., Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer, N. Engl. J. Med, vol.366, pp.109-119, 2012.

S. Verma, D. Miles, L. Gianni, I. E. Krop, M. Welslau et al., Trastuzumab emtansine for HER2-positive advanced breast cancer, N. Engl. J. Med, vol.367, pp.1783-1791, 2012.

T. Kubota, S. Kuroda, N. Kanaya, T. Morihiro, K. Aoyama et al., HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer, Nanomedicine, vol.14, pp.1919-1929, 2018.

T. Nunes, T. Pons, X. Hou, B. Caron, M. Rigal et al., Pulsed Laser Irradiation of Multifunctional Gold Nanoshells to Overcome Trastuzumab Resistance in HER2-Overexpressing Breast Cancer
URL : https://hal.archives-ouvertes.fr/inserm-02528127

A. Sargazi, F. Shiri, S. Keikha, and M. H. Majd, Hyaluronan magnetic nanoparticle for mitoxantrone delivery toward CD44-positive cancer cells, Colloids Surf. B Biointerfaces, vol.171, pp.150-158, 2018.

S. Patskovsky, E. Bergeron, and M. Meunier, Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells, J. Biophotonics, vol.8, pp.162-167, 2015.

J. H. Cho, A. R. Kim, S. H. Kim, S. J. Lee, H. Chung et al., Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133, Acta Biomater, vol.47, pp.182-192, 2017.

S. Liang, C. Li, C. Zhang, Y. Chen, L. Xu et al., CD44v6 Monoclonal Antibody-Conjugated Gold Nanostars for Targeted Photoacoustic Imaging and Plasmonic Photothermal Therapy of Gastric Cancer Stem-like Cells, Theranostics, vol.5, pp.970-984, 2015.

D. Sehedic, I. Chourpa, C. Tetaud, A. Griveau, C. Loussouarn et al., Locoregional Confinement and Major Clinical Benefit of (188)Re-Loaded CXCR4-Targeted Nanocarriers in an Orthotopic Human to Mouse Model of Glioblastoma, vol.7, pp.4517-4536, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01631431

Y. Liu, M. Yang, J. Zhang, X. Zhi, C. Li et al., Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy, ACS Nano, vol.10, pp.2375-2385, 2016.

V. M. Platt, F. C. Szoka, and . Jr, Anticancer therapeutics: Targeting macromolecules and nanocarriers to hyaluronan or CD44, a hyaluronan receptor, Mol. Pharm, vol.5, pp.474-486, 2008.

A. Mero and M. Campisi, Hyaluronic Acid Bioconjugates for the Delivery of Bioactive Molecules, Polymers, vol.6, pp.346-369, 2014.

Y. Yan, X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target, Stem Cells Transl. Med, vol.4, pp.1033-1043, 2015.

C. Cirimbei, V. Rotaru, E. Chitoran, O. Pavaleanu, and S. E. Cirimbei, Immediate and Long-term Results of Radiofrequency Ablation for Colorectal Liver Metastases, Anticancer Res, vol.37, pp.6489-6494, 2017.

M. Jamil and E. Y. Ng, Quantification of the effect of electrical and thermal parameters on radiofrequency ablation for concentric tumour model of different sizes, J. Therm. Biol, vol.51, pp.23-32, 2015.

M. N. Rylander, R. J. Stafford, J. Hazle, J. Whitney, and K. R. Diller, Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells, Int. J. Hyperth, vol.27, pp.791-801, 2011.

M. A. Zaimy, A. Jebali, B. Bazrafshan, S. Mehrtashfar, S. Shabani et al., Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer, Cancer Gene Ther, vol.23, pp.315-320, 2016.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2018 by the authors. Licensee MDPI