S. Grassin-delyle, C. Abrial, H. Salvator, M. Brollo, E. Naline et al., The Role of Toll-Like Receptors in the Production of Cytokines by Human Lung Macrophages, Journal of innate immunity, vol.2018, pp.1-11

C. Abrial, S. Grassin-delyle, H. Salvator, M. Brollo, E. Naline et al., 15-Lipoxygenases regulate the production of chemokines in human lung macrophages, British journal of pharmacology, vol.172, issue.17, p.4556470, 2015.

A. Iwasaki and R. Medzhitov, Control of adaptive immunity by the innate immune system, Nature immunology, vol.16, issue.4, p.4507498, 2015.

C. Pinheiro, A. Monteiro, F. F. Dutra, M. T. Bozza, M. Peters-golden et al., Short-Term Regulation of FcgammaR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products, Mediators Inflamm, p.5574301, 2017.

S. K. Biswas and A. Mantovani, Orchestration of metabolism by macrophages, Cell metabolism, vol.15, issue.4, pp.432-439, 2012.

Z. Zaslona, E. M. Palsson-mcdermott, D. Menon, M. Haneklaus, E. Flis et al., The Induction of Pro-IL-1beta by Lipopolysaccharide Requires Endogenous Prostaglandin E2 Production, J Immunol, vol.198, issue.9, pp.3558-64, 2017.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, issue.7444, p.4031686, 2013.

E. L. Mills, B. Kelly, A. Logan, A. Costa, M. Varma et al., Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages, Cell, vol.167, issue.2, p.5863951, 2016.

B. A. Fensterheim, J. D. Young, L. Luan, R. R. Kleinbard, C. L. Stothers et al., The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism, J Immunol, vol.200, issue.11, p.5964009, 2018.

L. E. Gleeson, F. J. Sheedy, E. M. Palsson-mcdermott, D. Triglia, S. M. O'leary et al., Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication, J Immunol, vol.196, issue.6, pp.2444-2453, 2016.

E. L. Mills, D. G. Ryan, H. A. Prag, D. Dikovskaya, D. Menon et al., Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1, Nature, vol.556, issue.7699, p.6047741, 2018.

D. G. Ryan, M. P. Murphy, C. Frezza, H. A. Prag, E. T. Chouchani et al., Coupling Krebs cycle metabolites to signalling in immunity and cancer, Nat Metab, vol.1, p.6485344, 2019.

A. F. Mcgettrick and L. A. O'neill, How metabolism generates signals during innate immunity and inflammation, J Biol Chem, vol.288, issue.32, pp.22893-22901, 2013.

P. Central and P. , , p.3743468

D. E. Byers and M. J. Holtzman, Alternatively activated macrophages and airway disease, Chest, vol.140, issue.3, pp.768-74, 2011.

P. Central and P. , , p.3168852

P. Dasgupta and A. D. Keegan, Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men, J Innate Immun, vol.4, pp.478-88, 2012.

E. Y. Kim, J. T. Battaile, A. C. Patel, Y. You, E. Agapov et al., Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease, Nat Med, vol.14, issue.6, pp.633-673, 2008.

M. Benoit, B. Desnues, and J. L. Mege, Macrophage polarization in bacterial infections, J Clin Invest, vol.181, issue.6, p.296903, 1990.

M. J. Coffey, S. M. Phare, and M. Peters-golden, Prolonged exposure to lipopolysaccharide inhibits macrophage 5-lipoxygenase metabolism via induction of nitric oxide synthesis, Journal of immunology, vol.165, issue.7, pp.3592-3600, 2000.

S. L. Hempel, M. M. Monick, and G. W. Hunninghake, Lipopolysaccharide induces prostaglandin H synthase-2 protein and mRNA in human alveolar macrophages and blood monocytes, The Journal of clinical investigation, vol.93, issue.1, p.293791, 1994.

A. K. Jha, S. C. Huang, A. Sergushichev, V. Lampropoulou, Y. Ivanova et al., Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, vol.42, issue.3, pp.419-449, 2015.

S. X. Adamson, R. Wang, W. Wu, B. Cooper, and J. Shannahan, Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36, PloS one, vol.13, issue.11, p.207042, 2018.

C. Zhao, Z. Tang, J. Yan, J. Fang, H. Wang et al., Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis, Sci Total Environ, vol.592, pp.357-65, 2017.

S. C. Sapcariu, T. Kanashova, M. Dilger, S. Diabate, S. Oeder et al., Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel, PloS one, vol.11, issue.6, p.4922672, 2016.

X. Wu, H. Cao, L. Zhao, J. Song, Y. She et al., Metabolomic analysis of glycerophospholipid signatures of inflammation treated with non-steroidal anti-inflammatory drugs-induced-RAW264.7 cells using (1), J Chromatogr B Analyt Technol Biomed Life Sci, vol.1028, pp.199-215, 2016.

K. M. Rattigan, A. W. Pountain, C. Regnault, F. Achcar, I. M. Vincent et al., Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli, PloS one, vol.13, issue.3, p.194126, 2018.

J. A. Hollenbaugh, C. Montero, R. F. Schinazi, J. Munger, and B. Kim, Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages, Virology, vol.491, p.4834987, 2016.

P. J. Groot-kormelink, L. Fawcett, P. D. Wright, M. Gosling, and T. C. Kent, Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates, BMC Immunol, vol.13, p.57, 2012.

T. Victoni, H. Salvator, C. Abrial, M. Brollo, L. Porto et al., Human lung and monocytederived macrophages differ with regard to the effects of beta2-adrenoceptor agonists on cytokine release. Respiratory research, vol.18, p.5480184, 2017.

A. Buenestado, S. Grassin-delyle, F. Guitard, E. Naline, C. Faisy et al., Roflumilast inhibits the release of chemokines and TNF-alpha from human lung macrophages stimulated with lipopolysaccharide, British journal of pharmacology, vol.165, issue.6, p.3372837, 2012.

S. K. Gill, Y. Yao, L. J. Kay, M. A. Bewley, H. M. Marriott et al., The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor, Br J Pharmacol, vol.173, issue.21, p.5056231, 2016.

M. A. Birrell, S. A. Maher, B. Dekkak, V. Jones, S. Wong et al., Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype, Thorax, vol.70, issue.8, pp.740-747, 2015.

M. J. Ratcliffe, A. Walding, P. A. Shelton, A. Flaherty, and I. G. Dougall, Activation of E-prostanoid4 and E-prosta-noid2 receptors inhibits TNF-alpha release from human alveolar macrophages, Eur Respir J, vol.29, issue.5, pp.986-94, 2007.

G. Briend and P. Devillier, Implication de la voie des kynurénines dans la polarisation des macrophages pulmonaires humains, Rev Mal Respir, vol.31, issue.9, p.879, 2014.

D. Alberati-giani, P. Ricciardi-castagnoli, C. Kohler, and A. M. Cesura, Regulation of the kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells, J Neurochem, vol.66, issue.3, p.8769859, 1996.

S. M. Lee, H. Y. Park, Y. S. Suh, E. H. Yoon, J. Kim et al., Inhibition of acute lethal pulmonary inflammation by the IDO-AhR pathway, Proc Natl Acad Sci, vol.114, issue.29, p.5530642, 2017.

B. Maneglier, B. Malleret, G. J. Guillemin, O. Spreux-varoquaux, P. Devillier et al., Modulation of indoleamine-2,3-dioxygenase expression and activity by HIV-1 in human macrophages, Fundam Clin Pharmacol, vol.23, issue.5, pp.573-81, 2009.

F. Ajamian, Y. Wu, C. Ebeling, R. Ilarraza, S. O. Odemuyiwa et al., Respiratory syncytial virus induces indoleamine 2,3-dioxygenase activity: a potential novel role in the development of allergic disease, Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, vol.45, issue.3, pp.644-59, 2015.

M. A. Meier, M. Ottiger, A. Vogeli, C. Steuer, L. Bernasconi et al., Activation of the Serotonin Pathway is Associated with Poor Outcome in COPD Exacerbation: Results of a Long-Term Cohort Study, Lung, vol.195, issue.3, p.28434116, 2017.

Y. Suzuki, T. Suda, K. Yokomura, M. Suzuki, M. Fujie et al., Serum activity of indoleamine 2,3-dioxygenase predicts prognosis of community-acquired pneumonia, J Infect, vol.63, issue.3, pp.215-237, 2011.

A. J. Rogers, M. Mcgeachie, R. M. Baron, L. Gazourian, J. A. Haspel et al., Metabolomic derangements are associated with mortality in critically ill adult patients, PloS one, vol.9, issue.1, p.3907548, 2014.

B. Marshall, D. B. Keskin, and A. L. Mellor, Regulation of prostaglandin synthesis and cell adhesion by a tryptophan catabolizing enzyme, BMC Biochem, vol.2, p.31925, 2001.

M. S. Poormasjedi-meibod, R. B. Jalili, A. Hosseini-tabatabaei, R. Hartwell, and A. Ghahary, Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses, PloS one, vol.8, issue.8, p.3733714, 2013.

C. J. Blohmke, T. C. Darton, C. Jones, N. M. Suarez, C. S. Waddington et al., Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. The Journal of experimental medicine, vol.213, pp.1061-77, 2016.

P. Central and P. , , p.4886356

J. M. Fox, L. K. Sage, S. Poore, S. Johnson, S. M. Tompkins et al., Drug analog inhibition of indoleamine 2,3-dioxygenase (IDO) activity modifies pattern recognition receptor expression and proinflammatory cytokine responses early during influenza virus infection, J Leukoc Biol, vol.96, issue.3, pp.447-52, 2014.

Y. Yamamoto, W. Yamasuge, S. Imai, K. Kunisawa, M. Hoshi et al., Lipopolysaccharide shock reveals the immune function of indoleamine 2,3-dioxygenase 2 through the regulation of IL-6/stat3 signalling, Sci Rep, vol.8, issue.1, p.30374077, 2018.

P. Central and P. , , p.6206095

S. Krishnan, Y. Ding, N. Saedi, M. Choi, G. V. Sridharan et al., Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages, Cell reports, vol.23, issue.4, p.6392449, 2018.

B. G. Cosio, L. Tsaprouni, K. Ito, E. Jazrawi, I. M. Adcock et al., Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages, J Exp Med, vol.200, issue.5, pp.689-95, 2004.

S. Hodge, G. Matthews, V. Mukaro, J. Ahern, A. Shivam et al., Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. American journal of respiratory cell and molecular biology, vol.44, pp.673-81, 2011.

H. Chen, M. J. Cowan, J. D. Hasday, S. N. Vogel, and A. E. Medvedev, Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NF-kappaB in alveolar macrophages stimulated with TLR2 and TLR4 agonists, J Immunol, vol.179, issue.9, pp.6097-106, 2007.

J. Armstrong, C. Sargent, and D. Singh, Glucocorticoid sensitivity of lipopolysaccharide-stimulated chronic obstructive pulmonary disease alveolar macrophages, Clin Exp Immunol, vol.158, issue.1, p.2759061, 2009.

J. Armstrong, C. Harbron, S. Lea, G. Booth, P. Cadden et al., Synergistic effects of p38 mitogen-activated protein kinase inhibition with a corticosteroid in alveolar macrophages from patients with chronic obstructive pulmonary disease, J Pharmacol Exp Ther, vol.338, issue.3, pp.732-772, 2011.

A. Higham, G. Booth, S. Lea, T. Southworth, J. Plumb et al., The effects of corticosteroids on COPD lung macrophages: a pooled analysis, Respiratory research, vol.16, p.4545868, 2015.