B. J. Krause, S. Schwarzenböck, M. Souvatzoglou, P. Pet, and . Ct, Recent Results Cancer Res. Fortschritte Krebsforsch. Progres Dans Rech. Sur Cancer, vol.187, pp.351-369, 2013.

S. Hess, B. A. Blomberg, H. J. Zhu, P. F. Høilund-carlsen, and A. Alavi, The pivotal role of FDG-PET/CT in modern medicine, Acad. Radiol, vol.21, pp.232-249, 2014.

P. H. Jarritt, K. J. Carson, A. R. Hounsell, and D. Visvikis, The role of PET/CT scanning in radiotherapy planning, Br. J. Radiol, vol.79, issue.1, pp.27-35, 2006.

L. Pan, P. Gu, G. Huang, H. Xue, and S. Wu, Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis, Eur. J. Gastroenterol. Hepatol, vol.21, pp.1008-1015, 2009.

N. Pandit, M. Gonen, L. Krug, and S. M. Larson, Prognostic value of [18F]FDG-PET imaging in small cell lung cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.30, pp.78-84, 2003.

M. Machtay, Pretreatment FDG-PET standardized uptake value as a prognostic factor for outcome in head and neck cancer, Head Neck, vol.31, pp.195-201, 2009.

D. A. Schinagl, P. N. Span, W. J. Oyen, and J. H. Kaanders, Can FDG PET predict radiation treatment outcome in head and neck cancer? Results of a prospective study, Eur. J. Nucl. Med. Mol. Imaging, vol.38, pp.1449-1458, 2011.

F. Tixier, Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer, J. Nucl. Med, vol.52, pp.369-378, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00574272

R. J. Hicks, Role of 18F-FDG PET in Assessment of Response in Non-Small Cell Lung Cancer, J. Nucl. Med, vol.50, pp.31-42, 2009.

M. Hatt, C. Le-rest, A. Turzo, C. Roux, and D. Visvikis, A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET, IEEE Trans. Med. Imaging, vol.28, pp.881-893, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00372910

F. Hofheinz, An automatic method for accurate volume delineation of heterogeneous tumors in PET, Med. Phys, vol.40, p.82503, 2013.

C. Parmar, Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation, PLOS ONE, vol.9, p.102107, 2014.

I. Apostolova, Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer, Eur. Radiol, vol.24, pp.2077-2087, 2014.

P. Lambin, Radiomics: Extracting more information from medical images using advanced feature analysis, Eur. J. Cancer, vol.48, pp.441-446, 2012.

M. Hatt, Reproducibility of 18F-FDG and 3?-deoxy-3?-18F-fluorothymidine PET tumor volume measurements, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.51, pp.1368-1376, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00537774

P. E. Galavis, C. Hollensen, N. Jallow, B. Paliwal, and R. Jeraj, Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters, Acta Oncol, vol.49, pp.1012-1016, 2010.

J. M. Willaime, F. E. Turkheimer, L. M. Kenny, and E. O. Aboagye, Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography, Phys. Med. Biol, vol.58, p.187, 2013.

M. Hatt, F. Tixier, C. Cheze-le-rest, O. Pradier, and D. Visvikis, Robustness of intratumour 18 F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma, Eur. J. Nucl. Med. Mol. Imaging, vol.40, pp.1662-1671, 2013.

R. T. Leijenaar, Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability, Acta Oncol. Stockh. Swed, vol.52, pp.1391-1397, 2013.

F. Tixier, Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.53, pp.693-700, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00721377

M. Desseroit, Reliability of PET/CT shape and heterogeneity features in functional and morphological components of Non-Small Cell Lung Cancer tumors: a repeatability analysis in a prospective multi-center cohort, J. Nucl. Med, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01376668

I. El-naqa, Exploring feature-based approaches in PET images for predicting cancer treatment outcomes, Pattern Recognit, vol.42, pp.1162-1171, 2009.

M. Hatt, 18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort, J. Nucl. Med, vol.56, pp.38-44, 2015.

P. Lambin, Radiomics: Extracting more information from medical images using advanced feature analysis, Eur. J. Cancer Oxf. Engl, vol.48, pp.441-446, 1990.

R. J. Gillies, P. E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data, Radiology, vol.278, pp.563-577, 2015.

E. Segal, Decoding global gene expression programs in liver cancer by noninvasive imaging, Nat. Biotechnol, vol.25, pp.675-680, 2007.

H. J. Aerts, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat. Commun, vol.5, p.4006, 2014.

S. S. Yip, Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, 2016.

M. Hatt, The first MICCAI challenge on PET tumor segmentation, Med. Image Anal, vol.44, pp.177-195, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01659162

M. Hatt, Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method, Eur. J. Nucl. Med. Mol. Imaging, vol.45, pp.630-641, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01659258

L. Li, W. Lu, Y. Tan, and S. Tan, Variational PET/CT Tumor Co-Segmentation Integrated With PET Restoration, IEEE Trans. Radiat. Plasma Med. Sci, vol.4, pp.37-49, 2020.

Z. Guo, X. Li, H. Huang, N. Guo, and Q. Li, Deep Learning-Based Image Segmentation on Multimodal Medical Imaging, IEEE Trans. Radiat. Plasma Med. Sci, vol.3, pp.162-169, 2019.

A. Zwanenburg, S. Leger, M. Vallières, and S. Löck, & Initiative, for the I. B. S. Image biomarker standardisation initiative, 2016.

M. Bogowicz, Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma, Acta Oncol, vol.56, pp.1531-1536, 2017.

M. Vallières, Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer, Sci. Rep, vol.7, pp.1-14, 2017.

M. Pesson, A Gene Expression and Pre-mRNA Splicing Signature That Marks the Adenoma-Adenocarcinoma Progression in Colorectal Cancer, PLOS ONE, vol.9, p.87761, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00976068

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

E. Segal, Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Genet, vol.34, pp.166-176, 2003.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, J. R. Stat. Soc. Ser. B Methodol, vol.39, pp.1-38, 1977.

R. J. Mislevy, Bayes modal estimation in item response models, Psychometrika, vol.51, pp.177-195, 1986.

G. Joshi-tope, Reactome: a knowledgebase of biological pathways, Nucleic Acids Res, vol.33, pp.428-432, 2005.

R. J. Gillies, A. R. Anderson, R. A. Gatenby, and D. L. Morse, The biology underlying molecular imaging in oncology: from genome to anatome and back again, Clinical radiology, vol.65, issue.7, pp.517-521, 2010.

V. Kumar, Radiomics: The Process and the Challenges, Magn. Reson. Imaging, vol.30, pp.1234-1248, 2012.

X. Fave, Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?, Med. Phys, vol.42, pp.6784-6797, 2015.

M. J. Nyflot, Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards, J. Med. Imaging, vol.2, pp.41002-041002, 2015.

G. J. Cook, Radiomics in PET: principles and applications, Clin. Transl. Imaging, vol.2, pp.269-276, 2014.

M. Hatt, Characterization of PET/CT images using texture analysis: the past, the present? any future?, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.151-165, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01330349

S. Huang, Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis, Npj Breast Cancer, vol.4, p.24, 2018.

C. Parmar, Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer, Sci. Rep, vol.5, p.11044, 2015.

N. H. Nicolay, Correlative analyses between tissue-based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy-results from a prospective trial, Eur. J. Nucl. Med. Mol. Imaging, 2019.

B. Badic, Radiogenomics-based cancer prognosis in colorectal cancer, Sci. Rep, vol.9, p.9743, 2019.

R. Sun, A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study, Lancet Oncol, vol.19, pp.1180-1191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01958243

P. Lin, A radiogenomics signature for predicting the clinical outcome of bladder urothelial carcinoma, Eur. Radiol, 2019.

C. R. Leemans, B. J. Braakhuis, and R. H. Brakenhoff, The molecular biology of head and neck cancer, Nat. Rev. Cancer, vol.11, pp.9-22, 2011.