T. Simsek, The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche, Cell stem cell, vol.7, pp.380-390, 2010.

K. Takubo, Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells, Cell stem cell, vol.12, pp.49-61, 2013.

J. Ma and G. W. Hart, O-GlcNAc profiling: from proteins to proteomes, Clin Proteomics, vol.11, 2014.

J. A. Hanover, W. Chen, M. R. Bond, and . O-, GlcNAc in cancer: An Oncometabolism-fueled vicious cycle, Journal of bioenergetics and biomembranes, 2018.

R. Shafi, The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.5735-5739, 2000.

H. Jang, O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network, Cell stem cell, vol.11, pp.62-74, 2012.

S. Olivier-van-stichelen, P. Wang, M. Comly, D. C. Love, and J. A. Hanover, Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism, The Journal of biological chemistry, vol.292, pp.6076-6085, 2017.

C. S. Chu, O-GlcNAcylation regulates EZH2 protein stability and function, Proceedings of the National Academy of Sciences of the United States of America, vol.111, pp.1355-1360, 2014.

D. C. Love, M. W. Krause, and J. A. Hanover, O-GlcNAc cycling: emerging roles in development and epigenetics, Seminars in cell & developmental biology, vol.21, pp.646-654, 2010.

D. A. Sinclair, Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc), Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.13427-13432, 2009.

M. C. Gambetta, K. Oktaba, and J. Muller, Essential role of the glycosyltransferase sxc/Ogt in polycomb repression, Science, vol.325, pp.93-96, 2009.

I. Akan, D. C. Love, K. R. Harwood, M. R. Bond, and J. A. Hanover, Drosophila O-GlcNAcase Deletion Globally Perturbs Chromatin O-GlcNAcylation, The Journal of biological chemistry, vol.291, pp.9906-9919, 2016.

X. Ding, Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7), 2015.

T. Y. Chou, C. V. Dang, and G. W. Hart, Glycosylation of the c-Myc transactivation domain, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.4417-4421, 1995.

N. O'donnell, N. E. Zachara, G. W. Hart, and J. D. Marth, Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability, Molecular and cellular biology, vol.24, pp.1680-1690, 2004.

C. Keembiyehetty, Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis, The Journal of biological chemistry, vol.290, pp.7097-7113, 2015.

Z. Zhang, O-GlcNAc homeostasis contributes to cell fate decisions during hematopoiesis, The Journal of biological chemistry, vol.294, pp.1363-1379, 2019.

M. Swamy, Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy, Nature immunology, vol.17, pp.712-720, 2016.

C. M. Ferrer, O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling via Regulation of the HIF-1 Pathway, Molecular Cell, vol.54, pp.820-831, 2014.

J. De-boer, Transgenic mice with hematopoietic and lymphoid specific expression of Cre, European journal of immunology, vol.33, pp.314-325, 2003.

E. J. Kim, D. O. Kang, D. C. Love, and J. A. Hanover, Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate, Carbohydrate research, vol.341, pp.971-982, 2006.

M. A. Inlay, Ly6d marks the earliest stage of B-cell specification and identifies the branchpoint between B-cell and T-cell development, Genes Dev, vol.23, pp.2376-2381, 2009.

K. P. Kearse and G. W. Hart, Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins, Proceedings of the National Academy of Sciences of the United States of America, vol.88, pp.1701-1705, 1991.

A. Golks, T. T. Tran, J. F. Goetschy, and D. Guerini, Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation, The EMBO journal, vol.26, pp.4368-4379, 2007.

P. Ramakrishnan, Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation, Sci Signal, vol.6, 2013.

P. J. Lund, J. E. Elias, and M. Davis, Global Analysis of O-GlcNAc Glycoproteins in Activated Human T Cells, Journal of immunology, vol.197, pp.3086-3098, 1950.

C. M. Woo, Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag), Molecular & cellular proteomics: MCP, vol.17, pp.764-775, 2018.

D. K. Shah and J. C. Zuniga-pflucker, An overview of the intrathymic intricacies of T cell development, Journal of immunology, vol.192, pp.4017-4023, 1950.

L. Rossi, Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice, Cell stem cell, vol.11, pp.302-317, 2012.

F. I. Comer and G. W. Hart, Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II, Biochemistry, vol.40, pp.7845-7852, 2001.

W. G. Kelly, M. E. Dahmus, and G. W. Hart, RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc, The Journal of biological chemistry, vol.268, pp.10416-10424, 1993.

S. M. Ranuncolo, S. Ghosh, J. A. Hanover, G. W. Hart, and B. A. Lewis, Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo, The Journal of biological chemistry, vol.287, pp.23549-23561, 2012.

K. Sakabe, Z. Wang, and G. W. Hart, Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code, Proceedings of the National Academy of Sciences of the United States of America, vol.107, 2010.

R. Fujiki, GlcNAcylation of histone H2B facilitates its monoubiquitination, Nature, vol.480, pp.557-560, 2011.

S. Zhang, K. Roche, H. P. Nasheuer, and N. F. Lowndes, Modification of histones by sugar beta-N-acetylglucosamine (GlcNAc) occurs on multiple residues, including histone H3 serine 10, and is cell cycle-regulated, The Journal of biological chemistry, vol.286, pp.37483-37495, 2011.

J. J. Fong, beta-N-Acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3, The Journal of biological chemistry, vol.287, pp.12195-12203, 2012.

Q. Chen, Y. Chen, C. Bian, R. Fujiki, and X. Yu, TET2 promotes histone O-GlcNAcylation during gene transcription, Nature, vol.493, pp.561-564, 2013.

Q. Zhang, Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked beta-Nacetylglucosamine transferase (OGT), The Journal of biological chemistry, vol.289, pp.5986-5996, 2014.

P. Vella, Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells, Mol Cell, vol.49, pp.645-656, 2013.

F. T. Shi, Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells, The Journal of biological chemistry, vol.288, pp.20776-20784, 2013.

D. L. Coutu and J. Galipeau, Roles of FGF signaling in stem cell self-renewal, senescence and aging, Aging, vol.3, pp.920-933, 2011.

L. Oburoglu, Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification, Cell stem cell, vol.15, pp.169-184, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191586

S. Milewski, Glucosamine-6-phosphate synthase-the multi-facets enzyme, Biochimica et biophysica acta, vol.1597, pp.173-192, 2002.

P. Luo, T. He, R. Jiang, and G. Li, MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes, Molecular medicine reports, vol.12, pp.1163-1168, 2015.

C. A. Vaiana, T. Kurcon, and L. K. Mahal, MicroRNA-424 Predicts a Role for beta-1,4 Branched Glycosylation in Cell Cycle Progression, The Journal of biological chemistry, vol.291, pp.1529-1537, 2016.

Y. Liu, MicroRNA-24-1 suppresses mouse hepatoma cell invasion and metastasis via directly targeting O-GlcNAc transferase

, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol.91, pp.731-738, 2017.

S. K. Park, A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis, Cell reports, vol.20, pp.1088-1099, 2017.

K. R. Wotton, F. K. Weierud, S. Dietrich, and K. E. Lewis, Comparative genomics of Lbx loci reveals conservation of identical Lbx ohnologs in bony vertebrates, BMC evolutionary biology, vol.8, 2008.

Y. Lee, FGF signalling specifies haematopoietic stem cells through its regulation of somitic Notch signalling, Nature communications, vol.5, 2014.

C. Pouget, FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway, Nature communications, vol.5, 2014.

M. Antoine, K. Reimers, C. Dickson, and P. Kiefer, Fibroblast growth factor 3, a protein with dual subcellular localization, is targeted to the nucleus and nucleolus by the concerted action of two nuclear localization signals and a nucleolar retention signal, The Journal of biological chemistry, vol.272, pp.29475-29481, 1997.

P. Kiefer and C. Dickson, Nucleolar association of fibroblast growth factor 3 via specific sequence motifs has inhibitory effects on cell growth, Molecular and cellular biology, vol.15, pp.4364-4374, 1995.

K. Reimers, NoBP, a nuclear fibroblast growth factor 3 binding protein, is cell cycle regulated and promotes cell growth, Molecular and cellular biology, vol.21, pp.4996-5007, 2001.

X. Yang, MicroRNA-593-3p regulates insulin-promoted glucose consumption by targeting Slc38a1 and CLIP3, Journal of molecular endocrinology, vol.57, pp.211-222, 2016.

S. Tazawa, SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose, Life sciences, vol.76, pp.1039-1050, 2005.

C. Liu, J. Li, and . O-glcnac, A Sweetheart of the Cell Cycle and DNA Damage Response, Frontiers in endocrinology, vol.9, 2018.

S. Pathak, O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release, The EMBO journal, vol.31, pp.1394-1404, 2012.

M. A. Mondoux, O-linked-N-acetylglucosamine cycling and insulin signaling are required for the glucose stress response in Caenorhabditis elegans, Genetics, vol.188, pp.369-382, 2011.

J. A. Hanover, M. W. Krause, and D. C. Love, The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine, Biochimica et biophysica acta, vol.1800, pp.80-95, 2010.

S. Olivier-van-stichelen, O-GlcNAcylation stabilizes beta-catenin through direct competition with phosphorylation at threonine 41, FASEB journal: official publication of the Federation of American Societies for Experimental Biology, vol.28, pp.3325-3338, 2014.

J. Wu, O-GlcNAc transferase is critical for transducin-like enhancer of split (TLE)-mediated repression of canonical Wnt signaling, The Journal of biological chemistry, vol.289, pp.12168-12176, 2014.

W. H. Yang, NFkappaB activation is associated with its O-GlcNAcylation state under hyperglycemic conditions, Proc Natl Acad Sci, vol.105, pp.17345-17350, 2008.

Y. Zhang, Y. Qu, T. Niu, H. Wang, and K. Liu, O-GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 upregulation in endothelial cells, Biochem Biophys Res Commun, vol.484, pp.79-84, 2017.

A. G. Rajapakse, X. F. Ming, J. M. Carvas, and Z. Yang, O-linked beta-N-acetylglucosamine during hyperglycemia exerts both antiinflammatory and pro-oxidative properties in the endothelial system, Oxid Med Cell Longev, vol.2, pp.172-175, 2009.

R. Sackstein, Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone, Nat Med, vol.14, pp.181-187, 2008.

S. Takagaki, Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow, Sci Rep, vol.9, 2019.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome biology, vol.15, 2014.

J. T. Robinson, Integrative genomics viewer, Nature Biotechnology, vol.29, 2011.