M. Asquith and F. Powrie, An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer, J. Exp. Med, vol.207, pp.1573-1577, 2010.

P. B. Eckburg and D. A. Relman, The role of microbes in Crohn's disease, Clin. Infect. Dis, vol.44, pp.256-262, 2007.

M. H. Alhagamhmad, A. S. Day, D. A. Lemberg, and S. T. Leach, An overview of the bacterial contribution to Crohn disease pathogenesis, J. Med. Microbiol, vol.65, pp.1049-1059, 2016.

T. Knösel, C. Schewe, N. Petersen, M. Dietel, and I. Petersen, Prevalence of infectious pathogens in Crohn's disease, Pathol. Res. Pract, vol.205, pp.223-230, 2009.

G. Ianiro, H. Tilg, and A. Gasbarrini, Antibiotics as deep modulators of gut microbiota: between good and evil, Gut, vol.65, pp.1906-1915, 2016.

J. Wehkamp, Reduced Paneth cell alpha-defensins in ileal Crohn's disease, Proc. Natl. Acad. Sci. USA, vol.102, pp.18129-18134, 2005.

S. S. Cao, Epithelial ER Stress in Crohn's Disease and Ulcerative Colitis, Inflamm. Bowel Dis, vol.22, pp.984-993, 2016.

M. Pasparakis and P. Vandenabeele, Necroptosis and its role in inflammation, Nature, vol.517, pp.311-320, 2015.

A. Franke, Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nat. Genet, vol.42, pp.1118-1125, 2010.

K. S. Kobayashi, Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract, Science, vol.307, pp.731-734, 2005.

M. Chamaillard, Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases, Proc. Natl. Acad. Sci. USA, vol.100, pp.3455-3460, 2003.

I. Kübler, Influence of standard treatment on ileal and colonic antimicrobial defensin expression in active Crohn's disease, Aliment. Pharmacol. Ther, vol.30, pp.621-633, 2009.

M. J. Saez-lara, C. Gomez-llorente, J. Plaza-diaz, and A. Gil, The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials, Biomed Res. Int, p.505878, 2015.

Y. A. Ghouri, Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease, Clin. Exp. Gastroenterol, vol.7, pp.473-487, 2014.

M. Fernandez and E. , Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide, Gut, vol.60, pp.1050-1059, 2011.

J. Alard, New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches, Benef. Microbes, vol.9, pp.317-331, 2018.

M. Zaylaa, Probiotics in IBD: Combining in vitro and in vivo models for selecting strains with both anti-inflammatory potential as well as a capacity to restore the gut epithelial barrier, Journal of Functional Foods, vol.47, pp.304-315, 2018.

T. Zelante, Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22, Immunity, vol.39, pp.372-385, 2013.

B. Foligne, Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria, World J. Gastroenterol, vol.13, pp.236-243, 2007.

K. Karimi, M. D. Inman, J. Bienenstock, and P. Forsythe, Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice, Am. J. Respir. Crit. Care Med, vol.179, pp.186-193, 2009.

D. J. Silberger, C. L. Zindl, and C. T. Weaver, Citrobacter rodentium: a model enteropathogen for understanding the interplay of innate and adaptive components of type 3 immunity, Mucosal. Immunol, vol.10, pp.1108-1117, 2017.

K. C. Johnson-henry, Amelioration of the effects of Citrobacter rodentium infection in mice by pretreatment with probiotics, J. Infect. Dis, vol.191, pp.2106-2117, 2005.

A. Kumar, Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium, Am. J. Physiol. Gastrointest. Liver Physiol, vol.311, pp.817-826, 2016.

W. O'connor, A protective function for interleukin 17A in T cell-mediated intestinal inflammation, Nat. Immunol, vol.10, pp.603-609, 2009.

M. A. Kleinschek, Circulating and gut-resident human Th17 cells express CD161 and promote intestinal inflammation, J. Exp. Med, vol.206, pp.525-534, 2009.

A. Ogawa, A. Andoh, Y. Araki, T. Bamba, and Y. Fujiyama, Neutralization of interleukin-17 aggravates dextran sulfate sodiuminduced colitis in mice, Clin. Immunol, vol.110, pp.55-62, 2004.

X. O. Yang, Regulation of inflammatory responses by IL-17F, J. Exp. Med, vol.205, pp.1063-1075, 2008.

M. Möndel, Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans, Mucosal. Immunol, vol.2, pp.166-172, 2009.

H. M. Becker, A. Apladas, M. Scharl, M. Fried, and G. Rogler, Probiotic Escherichia coli Nissle 1917 and commensal E. coli K12 differentially affect the inflammasome in intestinal epithelial cells, Digestion, vol.89, pp.110-118, 2014.

M. Schlee, Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2, Clin. Exp. Immunol, vol.151, pp.528-535, 2008.

R. Kobayashi, Oral administration of Lactobacillus gasseri SBT2055 is effective in preventing Porphyromonas gingivalisaccelerated periodontal disease, Sci. Rep, vol.7, p.545, 2017.

H. Liu, Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets, Nutrients, vol.9, 2017.

L. A. Simms, Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease, Gut, vol.57, pp.903-910, 2008.

D. Elphick, S. Liddell, and Y. R. Mahida, Impaired luminal processing of human defensin-5 in Crohn's disease: persistence in a complex with chymotrypsinogen and trypsin, Am. J. Pathol, vol.172, pp.702-713, 2008.

S. Selber-hnatiw, Human Gut Microbiota: Toward an Ecology of Disease, Front. Microbiol, vol.8, p.1265, 2017.

E. C. Seth and M. E. Taga, Nutrient cross-feeding in the microbial world, Front. Microbiol, vol.5, p.350, 2014.

M. E. Hibbing, C. Fuqua, M. R. Parsek, and S. B. Peterson, Bacterial competition: surviving and thriving in the microbial jungle, Nat. Rev. Microbiol, vol.8, pp.15-25, 2010.

S. Yamamoto and X. Ma, Role of Nod2 in the development of Crohn's disease. Microbes Infect, vol.11, pp.912-918, 2009.

K. Kreymborg, IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis, J. Immunol, vol.179, pp.8098-8104, 2007.

P. Ye, Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense, J. Exp. Med, vol.194, pp.519-527, 2001.

B. Foligne, A key role of dendritic cells in probiotic functionality, PLoS ONE, vol.2, p.313, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00177781

B. Foligné, Recommendations for improved use of the murine TNBS-induced colitis model in evaluating anti-inflammatory properties of lactic acid bacteria: technical and microbiological aspects, Dig. Dis. Sci, vol.51, pp.390-400, 2006.

J. L. Wallace, W. K. Macnaughton, G. P. Morris, and P. L. Beck, Inhibition of leukotriene synthesis markedly accelerates healing in a rat model of inflammatory bowel disease, Gastroenterology, vol.96, issue.1, pp.29-36, 1989.

B. Chassaing, Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation, PLoS ONE, vol.7, p.44328, 2012.

J. Hrdý, Cytokine expression in cord blood cells of children of healthy and allergic mothers, Folia Microbiol. (Praha), vol.55, pp.515-519, 2010.