M. L. Blue, J. F. Daley, H. Levine, and S. F. Schlossman, Coexpression of T4 and T8 on peripheral blood T cells demonstrated by twocolor fluorescence flow cytometry, The Journal of Immunology, vol.134, pp.2281-2286, 1985.

M. Nascimbeni, E. Shin, L. Chiriboga, D. E. Kleiner, and B. Rehermann, Peripheral CD4+CD8+ T cells are differentiated effector memory cells with antiviral functions, Blood, vol.104, pp.478-486, 2004.

M. Nascimbeni, S. Pol, and B. Saunier, Distinct CD4+ CD8+ double-positive T cells in the blood and liver of patients during chronic hepatitis B and C, PLoS ONE, vol.6, p.20145, 2011.

A. Zloza, Potent HIV-specific responses are enriched in a unique subset of CD8+ T cells that coexpresses CD4 on its surface, Blood, vol.114, pp.3841-3853, 2009.

K. C. Cortés, Expression of programmed cell death protein 1 and T-cell immunoglobulin-and mucin-domain-containing molecule-3 on peripheral blood CD4+CD8+ double positive T cells in patients with chronic hepatitis C virus infection and in subjects who spontaneously cleared the virus, Journal of Viral Hepatitis, vol.26, pp.942-950, 2019.

D. Quandt, K. Rothe, R. Scholz, C. W. Baerwald, and U. Wagner, Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profile are increased in rheumatoid arthritis, PLoS ONE, vol.9, p.93293, 2014.

A. Waschbisch, Analysis of CD4+ CD8+ double-positive T cells in blood, cerebrospinal fluid and multiple sclerosis lesions, Clin. Exp. Immunol, vol.177, pp.404-411, 2014.

M. Bagot, Isolation of tumor-specific cytotoxic CD4+ and CD4+CD8dim+ T-cell clones infiltrating a cutaneous T-cell lymphoma, Blood, vol.91, pp.4331-4341, 1998.

J. Desfrançois, Increased frequency of nonconventional double positive CD4CD8 alphabeta T cells in human breast pleural effusions, Int. J. Cancer, vol.125, pp.374-380, 2009.

J. Desfrançois, Double Positive CD4CD8 ?? T Cells: A New Tumor-Reactive Population in Human Melanomas, PLOS ONE, vol.5, p.8437, 2010.

A. Rahemtullah, K. K. Reichard, F. I. Preffer, N. L. Harris, and R. P. Hasserjian, A double-positive CD4+CD8+ T-cell population is commonly found in nodular lymphocyte predominant Hodgkin lymphoma, Am. J. Clin. Pathol, vol.126, pp.805-814, 2006.

G. Sarrabayrouse, Tumor-reactive CD4+ CD8??+ CD103+ ??T cells: a prevalent tumor-reactive T-cell subset in metastatic colorectal cancers, Int. J. Cancer, vol.128, pp.2923-2932, 2011.

P. Bohner, Double Positive CD4+CD8+ T Cells Are Enriched in Urological Cancers and Favor T Helper-2 Polarization, Front. Immunol, vol.10, 2019.

L. C. Menard, Renal Cell Carcinoma (RCC) Tumors Display Large Expansion of Double Positive (DP) CD4+CD8+ T Cells With Expression of Exhaustion Markers, Front. Immunol, vol.9, 2018.

Y. Parel and C. Chizzolini, CD4+ CD8+ double positive (DP) T cells in health and disease, Autoimmun Rev, vol.3, pp.215-220, 2004.

A. Zloza and L. Al-harthi, Multiple populations of T lymphocytes are distinguished by the level of CD4 and CD8 coexpression and require individual consideration, J. Leukoc. Biol, vol.79, pp.4-6, 2006.

G. Das, An important regulatory role for CD4+CD8?? T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease, PNAS, vol.100, pp.5324-5329, 2003.

Y. B. Sullivan, A. L. Landay, J. A. Zack, S. G. Kitchen, and L. Al-harthi, Upregulation of CD4 on CD8+ T cells: CD4dimCD8bright T cells constitute an activated phenotype of CD8+ T cells, Immunology, vol.103, pp.270-280, 2001.

S. G. Kitchen, Activation of CD8 T cells induces expression of CD4, which functions as a chemotactic receptor, Blood, vol.99, pp.207-212, 2002.

T. Parrot, CD40L confers helper functions to human intra-melanoma class-I-restricted CD4+CD8+ double positive T cells, Oncoimmunology, vol.5, p.1250991, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01702809

A. Takeuchi, CRTAM determines the CD4+ cytotoxic T lymphocyte lineage, J. Exp. Med, vol.213, pp.123-138, 2016.

L. Gattinoni, D. E. Speiser, M. Lichterfeld, and C. Bonini, T memory stem cells in health and disease, Nat. Med, vol.23, pp.18-27, 2017.

J. Crespo, H. Sun, T. H. Welling, Z. Tian, and W. Zou, T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment, Curr. Opin. Immunol, vol.25, pp.214-221, 2013.

R. Thimme, Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation, J. Virol, vol.79, pp.12112-12116, 2005.

S. Rosshart, Interaction of KLRG1 with E-cadherin: new functional and structural insights, Eur. J. Immunol, vol.38, pp.3354-3364, 2008.

R. Kratchmarov, A. M. Magun, and S. L. Reiner, TCF1 expression marks self-renewing human CD8+ T cells, Blood Adv, vol.2, pp.1685-1690, 2018.

L. M. Snell, CD8+ T Cell Priming in Established Chronic Viral Infection Preferentially Directs Differentiation of Memory-like Cells for Sustained Immunity, Immunity, vol.49, pp.678-694, 2018.

Y. Wang, The Transcription Factor TCF1 Preserves the Effector Function of Exhausted CD8 T Cells During Chronic Viral Infection, Front. Immunol, vol.10, p.169, 2019.

N. Nagarsheth, M. S. Wicha, and W. Zou, Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy, Nat. Rev. Immunol, vol.17, pp.559-572, 2017.

I. Taniuchi, CD4 Helper and CD8 Cytotoxic T Cell Differentiation, Annu. Rev. Immunol, vol.36, pp.579-601, 2018.

E. V. Rothenberg, The chromatin landscape and transcription factors in T cell programming, Trends Immunol, vol.35, pp.195-204, 2014.

K. F. Wildt, The transcription factor Zbtb7b promotes CD4 expression by antagonizing Runx-mediated activation of the CD4 silencer, J. Immunol, vol.179, pp.4405-4414, 2007.

J. Rui, H. Liu, X. Zhu, Y. Cui, and X. Liu, Epigenetic silencing of CD8 genes by ThPOK-mediated deacetylation during CD4 T cell differentiation, J. Immunol, vol.189, pp.1380-1390, 2012.

L. Wang, The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells, Immunity, vol.29, pp.876-887, 2008.

M. S. Vacchio, A ThPOK-LRF transcriptional node maintains the integrity and effector potential of post-thymic CD4+ T cells, Nat. Immunol, vol.15, pp.947-956, 2014.

Y. Tsuchiya, ThPOK represses CXXC5, which induces methylation of histone H3 lysine 9 in Cd40lg promoter by association with SUV39H1: implications in repression of CD40L expression in CD8+ cytotoxic T cells, Journal of Leukocyte Biology, vol.100, pp.327-338, 2016.

R. Setoguchi, Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development, Science, vol.319, pp.822-825, 2008.

F. Cruz-guilloty, Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs, J. Exp. Med, vol.206, pp.51-59, 2009.

B. S. Reis, A. Rogoz, F. A. Costa-pinto, I. Taniuchi, and D. Mucida, Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity, Nat. Immunol, vol.14, pp.271-280, 2013.

M. Lovatt and M. Bijlmakers, Stabilisation of ?-Catenin Downstream of T Cell Receptor Signalling, PLOS ONE, vol.5, p.12794, 2010.

J. M. Schenkel, A. Zloza, W. Li, S. D. Narasipura, and L. Al-harthi, Catenin Signaling Mediates CD4 Expression on Mature CD8+ T Cells, vol.185, pp.2013-2019, 2010.

C. P. Ng and D. R. Littman, Tcf1 and Lef1 pack their own HDAC, Nat. Immunol, vol.17, pp.615-616, 2016.

N. Gervois, High avidity melanoma-reactive cytotoxic T lymphocytes are efficiently induced from peripheral blood lymphocytes on stimulation by peptide-pulsed melanoma cells, Clin. Cancer Res, vol.6, pp.1459-1467, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-02482162

G. K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments, Stat. Appl. Genet. Mol. Biol, vol.3, p.3, 2004.

M. E. Ritchie, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

M. Jeanmougin, Should We Abandon the t-Test in the Analysis of Gene Expression Microarray Data: A Comparison of Variance Modeling Strategies, Plos one, vol.5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00539115

A. Subramanian, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, vol.102, pp.15545-15550, 2005.

V. K. Mootha, PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet, vol.34, pp.267-273, 2003.