G. Jego, A. Hazoumé, R. Seigneuric, and C. Garrido, Targeting heat shock proteins in cancer, Cancer Lett, vol.332, pp.275-85, 2013.

S. K. Calderwood, E. A. Repasky, L. Neckers, and L. E. Hightower, The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease: Alexandria old town, Cell Stress Chaperones, vol.24, pp.1-6, 2018.

Y. Liu, Y. Li, and X. Lu, Regulators in the DNA damage response, Arch Biochem Biophys, vol.594, pp.18-25, 2016.

A. N. Blackford, J. S. Atm, A. , and D. , the trinity at the heart of the DNA damage response, Mol Cell, vol.66, pp.801-818, 2017.

A. M. Whitaker, M. A. Schaich, M. R. Smith, and T. S. Flynn, Freudenthal BD. Base excision repair of oxidative DNA damage: from mechanism to disease, Front Biosci, vol.22, pp.1493-522, 2017.

S. S. Wallace, Base excision repair: a critical player in many games, DNA Repair, vol.19, pp.14-26, 2014.

J. Jiricny, The multifaceted mismatch-repair system, Nat Rev Mol Cell Biol, vol.7, pp.335-381, 2006.

M. Baretti and D. T. Le, DNA mismatch repair in cancer, Pharm Ther, vol.189, pp.45-62, 2018.

O. D. Schärer, Nucleotide excision repair in eukaryotes, Cold Spring Harb Perspect Biol, vol.5, p.12609, 2013.

J. Her and S. F. Bunting, How cells ensure correct repair of DNA double-strand breaks, J Biol Chem, vol.293, pp.10502-10513, 2018.

N. R. Pannunzio, G. Watanabe, and M. R. Lieber, Nonhomologous DNA end-joining for repair of DNA double-strand breaks, J Biol Chem, vol.293, pp.10512-10535, 2018.

W. D. Wright, S. S. Shah, and W. D. Heyer, Homologous recombination and the repair of DNA double-strand breaks, J Biol Chem, vol.293, pp.10524-10559, 2018.

A. Sallmyr and A. E. Tomkinson, Repair of DNA double-strand breaks by mammalian alternative end-joining pathways, J Biol Chem, vol.293, pp.10536-10582, 2018.

M. L. Sottile and S. B. Nadin, Heat shock proteins and DNA repair mechanisms: an updated overview, Cell Stress Chaperones, vol.23, pp.303-318, 2018.

T. Yamamori, S. Meike, M. Nagane, H. Yasui, and O. Inanami, ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51, FEBS Lett, vol.587, pp.3348-53, 2013.

J. L. Weatherbee, J. L. Kraus, and A. H. Ross, ER stress in temozolomidetreated glioblastomas interferes with DNA repair and induces apoptosis, Oncotarget, vol.7, pp.43820-43854, 2016.

Y. Liu, J. W. Shergalis, A. Xu, J. Delaney, A. M. Calcaterra et al., Activation of the unfolded protein response via inhibition of protein disulfide isomerase decreases the capacity for DNA repair to sensitize glioblastoma to radiotherapy, Cancer Res, vol.79, pp.2923-2955, 2019.

N. Dicks, K. Gutierrez, M. Michalak, V. Bordignon, and L. B. Agellon, Endoplasmic reticulum stress, genome damage, and cancer, Front Oncol, vol.5, p.11, 2015.

S. B. Nadin, L. M. Vargas-roig, G. Drago, J. Ibarra, and D. R. Ciocca, Hsp27, Hsp70 and mismatch repair proteins hMLH1 and hMSH2 expression in peripheral blood lymphocytes from healthy subjects and cancer patients, Cancer Lett, vol.252, pp.131-177, 2007.

G. N. Castro, N. Cayado-gutiérrez, F. C. Zoppino, M. A. Fanelli, F. D. Cuello-carrión et al., Effects of temozolomide (TMZ) on the expression and interaction of heat shock proteins (HSPs) and DNA repair proteins in human malignant glioma cells, Cell Stress Chaperones, vol.20, pp.253-65, 2015.

M. L. Sottile, A. D. Losinno, M. A. Fanelli, F. D. Cuello-carrión, M. M. Montt-guevara et al., Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines, Int J Hyperth, vol.31, pp.464-75, 2015.

P. Kotoglou, A. Kalaitzakis, P. Vezyraki, T. Tzavaras, L. K. Michalis et al., Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks, Cell Stress Chaperones, vol.14, pp.391-406, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02369939

H. Dote, W. E. Burgan, K. Camphausen, and P. J. Tofilon, Inhibition of hsp90 compromises the DNA damage response to radiation, Cancer Res, vol.66, pp.9211-9231, 2006.

M. Noguchi, D. Yu, R. Hirayama, Y. Ninomiya, E. Sekine et al., Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, Biochem Biophys Res Commun, vol.351, pp.658-63, 2006.

S. R. Stecklein, E. Kumaraswamy, F. Behbod, W. Wang, V. Chaguturu et al., BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation, Proc Natl Acad Sci, vol.109, pp.13650-13655, 2012.

T. Oda, T. Hayano, H. Miyaso, N. Takahashi, and T. Yamashita, Hsp90 regulates the Fanconi anemia DNA damage response pathway, Blood, vol.109, pp.5016-5042, 2007.

M. Quanz, A. Herbette, M. Sayarath, L. De-koning, T. Dubois et al., Heat shock protein 90? (Hsp90?) is phosphorylated in response to DNA damage and accumulates in repair foci, J Biol Chem, vol.287, pp.8803-8818, 2012.

T. Imahori, K. Hosoda, T. Nakai, Y. Yamamoto, Y. Irino et al., Combined metabolic and transcriptional profiling identifies pentose phosphate pathway activation by HSP27 phosphorylation during cerebral ischemia, Neuroscience, vol.349, pp.1-16, 2017.

Y. Yamamoto, K. Hosoda, T. Imahori, J. Tanaka, K. Matsuo et al., Pentose phosphate pathway activation via HSP27 phosphorylation by ATM kinase: A putative endogenous antioxidant defense mechanism during cerebral ischemiareperfusion, Brain Res, vol.1687, pp.82-94, 2018.

A. L. Elaimy, A. Ahsan, K. Marsh, W. B. Pratt, D. Ray et al., ATM is the primary kinase responsible for phosphorylation of Hsp90? after ionizing radiation, Oncotarget, vol.7, pp.82450-82457, 2016.

S. Solier, K. W. Kohn, B. Scroggins, W. Xu, J. Trepel et al., Heat shock protein 90? (HSP90?), a substrate and chaperone of DNA-PK necessary for the apoptotic response, Proc Natl Acad Sci, vol.109, pp.12866-72, 2012.

Q. Li and J. D. Martinez, Loss of HSF1 results in defective radiationinduced G(2) arrest and DNA repair, Radiat Res, vol.176, pp.17-24, 2011.

V. Dahiya and J. Buchner, Functional principles and regulation of molecular chaperones, Adv Protein Chem Struct Biol, vol.114, pp.1-60, 2019.

A. P. Arrigo, Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell, Cell Stress Chaperones, vol.22, pp.517-546, 2017.

Y. Xu, Y. Diao, S. Qi, X. Pan, Q. Wang et al., Phosphorylated Hsp27 activates ATM-dependent p53 signaling and mediates the resistance of MCF-7 cells to doxorubicin-induced apoptosis, Cell Signal, vol.25, pp.1176-85, 2013.

D. M. Guttmann, L. Hart, K. Du, A. Seletsky, and C. Koumenis, Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair, Int J Radiat Oncol Biol Phys, vol.87, pp.168-75, 2013.

M. Katsogiannou, C. Andrieu, V. Baylot, A. Baudot, N. J. Dusetti et al., The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets, Mol Cell Proteom, vol.13, pp.3585-601, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01104661

C. Wano, K. Kita, S. Takahashi, S. Sugaya, M. Hino et al., Protective role of HSP27 against UVC-induced cell death in human cells, Exp Cell Res, vol.298, pp.584-92, 2004.

E. M. Clerico, W. Meng, A. Pozhidaeva, K. Bhasne, C. Petridis et al., Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines, Biochem J, vol.476, pp.1653-77, 2019.

M. Luengo, T. Mayer, M. P. Rüdiger, and S. , The Hsp70-Hsp90 chaperone cascade in protein folding, Trends Cell Biol, vol.29, pp.164-77, 2019.

R. Rosenzweig, N. B. Nillegoda, M. P. Mayer, and B. Bukau, The Hsp70 chaperone network, Nat Rev Mol Cell. Biol, 2019.

V. Calini, C. Urani, and M. Camatini, Overexpression of HSP70 is induced by ionizing radiation in C3H 10T1/2 cells and protects from DNA damage, Toxicol Vitr, vol.17, pp.561-567, 2003.

K. C. Park, D. S. Kim, H. O. Choi, K. H. Kim, J. H. Chung et al., Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line, Arch Dermatol Res, vol.292, pp.482-489, 2000.

Y. Duan, S. Huang, J. Yang, P. Niu, Z. Gong et al., HspA1A facilitates DNA repair in human bronchial epithelial cells exposed to Benzo[a]pyrene and interacts with casein kinase 2, Cell Stress Chaperones, vol.19, pp.271-280, 2014.

C. R. Hunt, D. J. Dix, G. G. Sharma, R. K. Pandita, A. Gupta et al., Genomic instability and enhanced radiosensitivity in Hsp70.1-and Hsp70.3-deficient mice, Mol Cell Biol, vol.24, pp.899-911, 2004.

W. Cho, J. X. Pang, J. Wang, Y. Mivechi, N. F. Moskophidis et al., The molecular chaperone heat shock protein 70 controls liver Heat-shock proteins: chaperoning DNA repair cancer initiation and progression by regulating adaptive DNA damage and mitogen-activated protein kinase/extracellular Signal-regulated Kinase Signaling Pathways, Mol Cell Biol, vol.39, pp.391-409, 2019.

S. Zemanovic, M. V. Ivanov, L. V. Ivanova, A. Bhatnagar, T. Michalkiewicz et al., Dynamic phosphorylation of the C terminus of Hsp70 regulates the mitochondrial import of SOD2 and redox balance, Cell Rep, vol.25, pp.2605-2621, 2018.

I. Martínez-de-toda, D. La-fuente, and M. , The role of Hsp70 in oxiinflamm-aging and its use as a potential biomarker of lifespan, Biogerontology, vol.16, pp.709-730, 2015.

W. Kim, H. J. Kwon, H. Y. Jung, D. Y. Yoo, S. M. Moon et al., Tat-HSP70 protects neurons from oxidative damage in the NSC34 cells and ischemic damage in the ventral horn of rabbit spinal cord, Neurochem. Int, vol.129, p.104477, 2019.

T. Abe, T. Konishi, T. Hirano, H. Kasai, K. Shimizu et al., Possible correlation between DNA damage induced by hydrogen peroxide and translocation of heat shock 70 protein into the nucleus, Biochem Biophys Res Commun, vol.206, pp.548-55, 1995.

R. Bases, Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation, Cell Stress Chaperones, vol.11, pp.240-249, 2006.

G. P. Kenny, F. D. Reardon, G. G. Giesbrecht, M. Jette, and J. S. Thoden, The effect of ambient temperature and exercise intensity on postexercise thermal homeostasis, Eur J Appl Physiol Occup Physiol, vol.76, pp.109-124, 1997.

F. Mendez, E. Kozin, and R. Bases, Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta, Cell Stress Chaperones, vol.8, pp.153-61, 2003.

M. K. Kenny, F. Mendez, M. Sandigursky, R. P. Kureekattil, J. D. Goldman et al., Heat shock protein 70 binds to human apurinic/apyrimidinic endonuclease and stimulates endonuclease activity at abasic sites, J Biol Chem, vol.276, pp.9532-9538, 2001.

J. Yang, X. Liu, P. Niu, Y. Zou, and Y. Duan, Correlations and colocalizations of Hsp70 with XPA, XPG in human bronchial epithelia cells exposed to benzo, Toxicology, vol.265, pp.10-14, 2009.

M. A. Petit, W. Bedale, J. Osipiuk, C. Lu, M. Rajagopalan et al., Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli, J Biol Chem, vol.269, pp.23824-23833, 1994.

S. J. Goldfless, A. S. Morag, K. A. Belisle, V. A. Sutera, and S. T. Lovett, DNA repeat rearrangements mediated by DnaK-dependent replication fork repair, Mol Cell, vol.21, pp.595-604, 2006.

C. Park, Y. Suh, and A. M. Cuervo, Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage, Nat Commun, vol.6, p.6823, 2015.

I. Litwin, E. Pilarczyk, and R. Wysocki, The emerging role of cohesin in the DNA damage response, Genes (Basel), vol.9, p.581, 2018.

J. M. Heidinger-pauli, E. Unal, V. Guacci, and D. Koshland, The kleisin subunit of cohesin dictates damage-induced cohesion, Mol Cell, vol.31, pp.47-56, 2008.

Z. Gvozdenov, J. Kolhe, and B. C. Freeman, the nuclear and DNAassociated molecular chaperone network, Cold Spring Harb Perspect Biol, 2019.

T. T. Koll, S. S. Feis, M. H. Wright, M. M. Teniola, M. M. Richardson et al., HSP90 inhibitor, DMAG, synergizes with radiation of lung cancer cells by interfering with base excision and ATM-mediated DNA repair, Mol Cancer Ther, vol.7, pp.1985-92, 2008.

E. J. Choi, B. J. Cho, D. J. Lee, Y. H. Hwang, S. H. Chun et al., Enhanced cytotoxic effect of radiation and temozolomide in malignant glioma cells: targeting PI3K-AKT-mTOR signaling, HSP90 and histone deacetylases, BMC Cancer, vol.14, p.17, 2014.

Y. Lee, H. K. Li, A. Masaoka, S. Sunada, H. Hirakawa et al., The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining, Radiother Oncol, vol.121, pp.162-170, 2016.

K. Ha, W. Fiskus, R. Rao, R. Balusu, S. Venkannagari et al., Hsp90 inhibitor-mediated disruption of chaperone association of ATR with hsp90 sensitizes cancer cells to DNA damage, Mol Cancer Ther, vol.10, pp.1194-206, 2011.

A. Ernst, H. Anders, H. Kapfhammer, M. Orth, R. Hennel et al., HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas, Cancer Lett, vol.365, pp.211-233, 2015.

S. Zaidi, M. Mclaughlin, S. A. Bhide, S. A. Eccles, P. Workman et al., The HSP90 inhibitor NVP-AUY922 radiosensitizes by abrogation of homologous recombination resulting in mitotic entry with unresolved DNA damage, PLoS ONE, vol.7, p.35436, 2012.

A. N. Cheng, C. C. Fan, Y. K. Lo, C. L. Kuo, H. C. Wang et al., Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 stabilizes HSP90-HCLK2-MRN complex to enhance ATR/ATM signaling that overcomes replication stress in cancer, Sci Rep, vol.7, p.17024, 2017.

J. C. Ko, H. J. Chen, Y. C. Huang, S. C. Tseng, S. H. Weng et al., HSP90 inhibition induces cytotoxicity via down-regulation of Rad51 expression and DNA repair capacity in non-small cell lung cancer cells, Regul Toxicol Pharmacol, vol.64, pp.415-439, 2012.

T. Suhane, S. Laskar, S. Advani, N. Roy, S. Varunan et al., Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair, Eukaryot Cell, vol.14, pp.64-77, 2015.

D. Mittelman, K. Sykoudis, M. Hersh, Y. Lin, and J. H. Wilson, Hsp90 modulates CAG repeat instability in human cells, Cell Stress Chaperones, vol.15, pp.753-762, 2010.

F. A. Dungey, K. W. Caldecott, and A. J. Chalmers, Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90, Mol Cancer Ther, vol.8, pp.2243-54, 2009.

Y. Yang, W. Wang, M. Li, Y. Gao, W. Zhang et al., NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits, Cell Mol Life Sci, vol.76, pp.381-95, 2019.

N. Khurana, S. Bakshi, W. Tabassum, and M. K. Bhattacharyya, Bhattacharyya S. Hsp90 is essential for Chl1-mediated chromosome segregation and sister chromatid cohesion. mSphere, vol.3, pp.225-243, 2018.

B. Schrank and J. Gautier, Assembling nuclear domains: Lessons from DNA repair, J Cell Biol, vol.218, pp.2444-55, 2019.

F. J. Echtenkamp, Z. Gvozdenov, N. L. Adkins, Y. Zhang, M. Lynch-day et al., Hsp90 and p23 molecular chaperones control chromatin architecture by maintaining the functional pool of the RSC chromatin remodeler, Mol Cell, vol.64, pp.888-99, 2016.

S. J. Arlander, S. J. Felts, J. M. Wagner, B. Stensgard, D. O. Toft et al., Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones, J Biol Chem, vol.281, pp.2989-98, 2006.

S. J. Arlander, A. K. Eapen, B. T. Vroman, R. J. Mcdonald, D. O. Toft et al., Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress, J Biol Chem, vol.278, pp.52572-52579, 2003.

M. Nomura, N. Nomura, and J. Yamashita, Geldanamycin-induced degradation of Chk1 is mediated by proteasome, Biochem Biophys Res Commun, vol.335, pp.900-905, 2005.

Q. Fang, B. Inanc, S. Schamus, X. H. Wang, L. Wei et al., HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase ?, Nat Commun, vol.5, p.5513, 2014.

X. Wang, D. M. Heuvelman, J. A. Carroll, D. R. Dufield, and J. L. Masferrer, Geldanamycin-induced PCNA degradation in isolated Hsp90 complex from cancer cells, Cancer Invest, vol.28, pp.635-676, 2010.

T. Sekimoto, T. Oda, F. M. Pozo, Y. Murakumo, C. Masutani et al., The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells, Mol Cell, vol.37, pp.79-89, 2010.

R. A. Zabinsky, G. A. Mason, C. Queitsch, and D. F. Jarosz, It's not magic-Hsp90 and its effects on genetic and epigenetic variation, Semin Cell Dev Biol, vol.88, pp.21-35, 2019.

V. Condelli, F. Crispo, M. Pietrafesa, G. Lettini, D. S. Matassa et al., HSP90 molecular chaperones, metabolic rewiring, and epigenetics: impact on tumor progression and perspective for anticancer therapy, Cells, vol.8, pp.532-55, 2019.

J. S. Isaacs, Hsp90 as a "Chaperone" of the epigenome: insights and opportunities for cancer therapy, Adv Cancer Res, vol.129, pp.107-147, 2016.

V. Sollars, X. Lu, X. L. Wang, X. Garfinkel, M. D. Ruden et al., Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution, Nat Genet, vol.33, pp.70-74, 2003.

Q. Q. Li, J. J. Hao, Z. Zhang, L. S. Krane, K. H. Hammerich et al., Proteomic analysis of proteome and histone posttranslational modifications in heat shock protein 90 inhibitionmediated bladder cancer therapeutics, Sci Rep, vol.7, p.201, 2017.

E. I. Campos, J. Fillingham, G. Li, H. Zheng, P. Voigt et al., The program for processing newly synthesized histones H3.1 and H4, Nat Struct Mol Biol, vol.17, pp.1343-51, 2010.

M. Abu-farha, J. P. Lambert, A. S. Al-madhoun, F. Elisma, I. S. Skerjanc et al., The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase, Mol Cell Proteom, vol.7, pp.560-72, 2008.

W. Obermann, A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor ? methylation by the lysine methyltransferase SMYD2, J Biol Chem, vol.293, pp.16479-87, 2018.

M. A. Brown, K. Foreman, J. Harriss, C. Das, L. Zhu et al., C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis, Oncotarget, vol.6, pp.4005-4024, 2015.

Q. Huang, S. He, Y. Tian, Y. Gu, P. Chen et al., Hsp90 inhibition destabilizes Ezh2 protein in alloreactive T cells and reduces graft-versus-host disease in mice, Blood, vol.129, pp.2737-2785, 2017.

N. Coban and N. Varol, The effect of heat shock protein 90 inhibitors on histone 4 lysine 20 methylation in bladder cancer, EXCLI J, vol.18, pp.195-203, 2019.

X. Zhou, L. X. Fan, D. J. Peters, M. Trudel, J. E. Bradner et al., Therapeutic targeting of BET bromodomain protein, Brd4, delays cyst growth in ADPKD, Hum Mol Genet, vol.24, pp.3982-93, 2015.

I. Kasioulis, H. M. Syred, P. Tate, A. Finch, J. Shaw et al., Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis, Mol Biol Cell, vol.25, pp.1216-1249, 2014.

R. U. Mattoo, S. K. Sharma, S. Priya, A. Finka, and P. Goloubinoff, Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates, J Biol Chem, vol.288, pp.21399-411, 2013.

H. Rampelt, J. Kirstein-miles, N. B. Nillegoda, C. K. Scholz, S. R. Morimoto et al., Metazoan Hsp70 machines use Hsp110 to power protein disaggregation, EMBO J, vol.31, pp.4221-4256, 2012.

A. Taherian, P. H. Krone, and N. Ovsenek, A comparison of Hsp90al-pha and Hsp90beta interactions with cochaperones and substrates, Biochem Cell Biol, vol.86, pp.37-45, 2008.

G. Gozzi, D. Gonzalez, C. Boudesco, A. Dias, G. Gotthard et al., Selecting the first chemical molecule inhibitor of HSP110 for colorectal cancer therapy, Cell Death Differ, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02423308

J. N. Rauch and J. E. Gestwicki, Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) generates functionally distinct complexes in vitro, J Biol Chem, vol.289, pp.1402-1416, 2014.

A. Bracher and J. Verghese, The nucleotide exchange factors of Hsp70 molecular chaperones, Front Mol Biosci, vol.2, p.10, 2015.

M. Kai, T. Nakatsura, H. Egami, S. Senju, Y. Nishimura et al., Heat shock protein 105 is overexpressed in a variety of human tumors, Oncol Rep, vol.10, pp.1777-82, 2003.

X. Thomas, L. Campos, C. Mounier, J. Cornillon, P. Flandrin et al., Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia, Leuk Res, vol.29, pp.1049-58, 2005.

S. K. Calderwood, M. A. Khaleque, D. B. Sawyer, and D. R. Ciocca, Heat shock proteins in cancer: chaperones of tumorigenesis, Trends Biochem Sci, vol.31, pp.164-72, 2006.

C. Dorard, A. De-thonel, A. Collura, L. Marisa, M. Svrcek et al., Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis, Nat Med, vol.17, pp.1283-1292, 2011.

A. Collura, A. Lagrange, M. Svrcek, L. Marisa, O. Buhard et al., Patients with colorectal tumors with microsatellite instability and large deletions in HSP110 T17 have improved response to 5-fluorouracil-based chemotherapy, Gastroenterology, vol.146, pp.401-412, 2014.

A. Kimura, K. Ogata, B. Altan, T. Yokobori, M. Ide et al., Nuclear heat shock protein 110 expression is associated with poor prognosis and chemotherapy resistance in gastric cancer, Oncotarget, vol.7, pp.18415-18438, 2016.

S. Z. Causse, G. Marcion, G. Chanteloup, B. Uyanik, C. Boudesco et al., HSP110 translocates to the nucleus upon genotoxic chemotherapy and promotes DNA repair in colorectal cancer cells, Oncogene, vol.38, pp.2767-77, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01975747

S. Chatterjee and T. F. Burns, Targeting heat shock proteins in cancer: a promising therapeutic approach, Int J Mol Sci, vol.18, 1978.

F. Olotu, E. Adeniji, C. Agoni, I. Bjij, S. Khan et al., An update on the discovery and development of selective heat shock protein inhibitors as anti-cancer therapy, Expert Opin Drug Discov, vol.13, pp.903-921, 2018.

C. Boudesco, E. Verhoeyen, L. Martin, C. Chassagne-clement, L. Salmi et al., HSP110 sustains chronic NF-?B signaling in activated B-cell diffuse large B-cell lymphoma through MyD88 stabilization, Blood, vol.132, pp.510-530, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01812477

C. Garrido, A. Collura, K. Berthenet, A. Lagrange, and A. Duval,

, Med Sci, vol.28, pp.9-10, 2012.

T. Yamashita, T. Oda, and T. Sekimoto, Hsp90 and the Fanconi anemia pathway: a molecular link between protein quality control and the DNA damage response, Cell Cycle, vol.6, pp.2232-2237, 2007.

V. Naim and F. Rosselli, The FANC pathway and mitosis: a replication legacy, Cell Cycle, vol.8, pp.2907-2918, 2009.

J. I. Leu, J. Pimkina, A. Frank, M. E. Murphy, and D. L. George, A small molecule inhibitor of inducible heat shock protein 70, Mol Cell, vol.36, pp.15-27, 2009.

A. Rousaki, Y. Miyata, U. K. Jinwal, C. A. Dickey, J. E. Gestwicki et al., Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones, J Mol Biol, vol.411, pp.614-646, 2011.

X. Li, S. R. Srinivasan, J. Connarn, A. Ahmad, Z. T. Young et al., Analogs of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077, as anti-cancer agents, ACS Med Chem Lett, vol.4, pp.1042-1089, 2013.

Y. Miyata, X. Li, H. F. Lee, U. K. Jinwal, S. R. Srinivasan et al., Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels, ACS Chem Neurosci, vol.4, pp.930-939, 2013.

, Heat-shock proteins: chaperoning DNA repair

D. Gupta, S. Bommaka, M. K. Banerjee, and A. , Inhibiting proteinprotein interactions of Hsp90 as a novel approach for targeting cancer, Eur J Med Chem, vol.178, pp.48-63, 2019.

J. C. Heinrich, A. Tuukkanen, M. Schroeder, T. Fahrig, and R. Fahrig, RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients, J Cancer Res Clin Oncol, vol.137, pp.1349-61, 2011.

E. Schmitt, A. Parcellier, S. Gurbuxani, C. Cande, A. Hammann et al., Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis-inducing factor mutant, Cancer Res, vol.63, pp.8233-8273, 2003.

A. L. Rérole, J. Gobbo, D. Thonel, A. Schmitt, E. et al., Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy, Cancer Res, vol.71, pp.484-95, 2011.

K. Nadeau, S. G. Nadler, M. Saulnier, M. A. Tepper, and C. T. Walsh, Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90, Biochemistry, vol.33, pp.2561-2568, 1994.

S. W. Fewell, C. M. Smith, M. A. Lyon, T. P. Dumitrescu, P. Wipf et al., Small molecule modulators of endogenous and cochaperone-stimulated Hsp70 ATPase activity, J Biol Chem, vol.279, pp.51131-51171, 2004.

A. J. Massey, D. S. Williamson, H. Browne, J. B. Murray, P. Dokurno et al., A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells, Cancer Chemother Pharm, vol.66, pp.535-580, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00552481

L. Neckers, T. W. Schulte, and E. Mimnaugh, Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity, Invest New Drugs, vol.17, pp.361-73, 1999.

J. M. Jez, J. C. Chen, G. Rastelli, R. M. Stroud, and D. V. Santi, Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90, Chem Biol, vol.10, pp.361-369, 2003.

W. J. Jang, S. K. Jung, J. S. Kang, J. W. Jeong, M. K. Bae et al., Anti-tumor activity of WK88-1, a novel geldanamycin derivative, in gefitinib-resistant non-small cell lung cancers with Met amplification, Cancer Sci, vol.105, pp.1245-53, 2014.

J. R. Sydor, E. Normant, C. S. Pien, J. R. Porter, J. Ge et al., Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90, Proc Natl Acad Sci USA, vol.103, pp.17408-17421, 2006.

M. Scaltriti, V. Serra, E. Normant, M. Guzman, O. Rodriguez et al., Antitumor activity of the Hsp90 inhibitor IPI-504 in HER2-positive trastuzumab-resistant breast cancer, Mol Cancer Ther, vol.10, pp.817-841, 2011.

S. Soga, Y. Shiotsu, S. Akinaga, and S. V. Sharma, Development of radicicol analogues, Curr Cancer Drug Targets, vol.3, pp.359-69, 2003.

Y. Wang, J. B. Trepel, L. M. Neckers, and G. Giaccone, STA-9090, a small-molecule Hsp90 inhibitor for the potential treatment of cancer, Curr Opin Investig Drugs, vol.11, pp.1466-76, 2010.

A. J. Woodhead, H. Angove, M. G. Carr, G. Chessari, M. Congreve et al., Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl] methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design, J Med Chem, vol.53, pp.5956-69, 2010.

S. H. Kim, A. Bajji, R. Tangallapally, B. Markovitz, R. Trovato et al., Discovery of (2S)-1-[4-(2-{6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]-9H-purin-9-yl}ethyl) piperidin-1-yl]-2-hydroxypropan-1-one (MPC-3100), a purinebased Hsp90 inhibitor, J Med Chem, vol.55, pp.7480-501, 2012.

K. H. Huang, J. M. Veal, R. P. Fadden, J. W. Rice, J. Eaves et al., Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents, J Med Chem, vol.52, pp.4288-305, 2009.

B. Gibert, E. Hadchity, A. Czekalla, M. T. Aloy, P. Colas et al., Inhibition of heat shock protein 27 (HspB1) tumorigenic functions by peptide aptamers, Oncogene, vol.30, pp.3672-81, 2011.

S. Stangl, M. Gehrmann, J. Riegger, K. Kuhs, I. Riederer et al., Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody, Proc Natl Acad Sci, vol.108, pp.733-741, 2011.

P. Rocchi, P. Jugpal, A. So, S. Sinneman, S. Ettinger et al., Small interference RNA targeting heat-shock protein 27 inhibits the growth of prostatic cell lines and induces apoptosis via caspase-3 activation in vitro, BJU Int, vol.98, pp.1082-1091, 2006.

W. M. Fu, W. M. Wang, H. Wang, X. Zhu, Y. Liang et al., 1,3,5-Trihydroxy-13,13-dimethyl-2H-pyran [7,6-b] xanthone directly targets heat shock protein 27 in hepatocellular carcinoma, Cell Biol Int, vol.38, pp.272-278, 2014.