CHU Cochin [AP-HP] (27 Rue du Faubourg Saint-Jacques 75014 Paris - France)
Abstract : Objectives: CTNNB1-mutated hepatocellular carcinomas (HCCs) constitute a major part of human HCC and are largely inaccessible to target therapy. Yet, little is known about the metabolic reprogramming induced by β-catenin oncogenic activation in the liver. We aimed to decipher such reprogramming and assess whether it may represent a new avenue for targeted therapy of CTNNB1-mutated HCC.
Design: We used mice with hepatocyte-specific oncogenic activation of β-catenin to evaluate metabolic reprogramming using metabolic fluxes on tumourous explants and primary hepatocytes. We assess the role of Pparα in knock-out mice and analysed the consequences of fatty acid oxidation (FAO) using etomoxir. We explored the expression of the FAO pathway in an annotated human HCC dataset.
Results: β-catenin-activated HCC were not glycolytic but intensively oxidised fatty acids. We found that Pparα is a β-catenin target involved in FAO metabolic reprograming. Deletion of Pparα was sufficient to block the initiation and progression of β-catenin-dependent HCC development. FAO was also enriched in human CTNNB1-mutated HCC, under the control of the transcription factor PPARα.
Conclusions: FAO induced by β-catenin oncogenic activation in the liver is the driving force of the β-catenin-induced HCC. Inhibiting FAO by genetic and pharmacological approaches blocks HCC development, showing that inhibition of FAO is a suitable therapeutic approach for CTNNB1-mutated HCC.
https://www.hal.inserm.fr/inserm-02532896
Contributor : Angélique Gougelet <>
Submitted on : Tuesday, January 5, 2021 - 12:07:34 PM Last modification on : Thursday, January 7, 2021 - 3:41:13 AM
File
Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed
until : jamais