C. L. Brooks and W. Gu, How does SIRT1 affect metabolism, senescence and cancer?, Nat Rev Cancer, vol.9, pp.123-128, 2009.

S. Carreira, J. Goodall, L. Denat, M. Rodriguez, P. Nuciforo et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev, vol.20, pp.3426-3439, 2006.

Y. Cheli, M. Ohanna, R. Ballotti, and C. Bertolotto, Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigment Cell Melanoma Res, vol.23, pp.27-40, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530740

E. Steingrimsson, N. G. Copeland, and N. A. Jenkins, Melanocytes and the microphthalmia transcription factor network, Annu Rev Genet, vol.38, pp.365-411, 2004.

J. P. Ortonne and R. Ballotti, Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes, J Cell Biol, vol.142, pp.827-835, 1998.

C. Gaggioli, R. Busca, A. P. Ortonne, J. P. Ballotti, and R. , Microphthalmia-associated transcription factor (MITF) is required but is not sufficient to induce the expression of melanogenic genes, Pigment Cell Res, vol.16, pp.374-382, 2003.

L. A. Garraway, H. R. Widlund, M. A. Rubin, G. Getz, A. J. Berger et al., Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma, Nature, vol.436, pp.117-122, 2005.

C. Bertolotto, F. Lesueur, S. Giuliano, T. Strub, M. De-lichy et al., A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma, vol.480, pp.94-98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01791271

B. Bressac-de-paillerets, F. Lesueur, C. Bertolotto, S. Yokoyama, S. L. Woods et al., A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma, European journal of cell biology, vol.480, issue.10, pp.99-103, 2011.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

M. Cerezo, M. Tichet, A. P. Ohanna, M. Lehraiki, A. Rouaud et al., Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner, Mol Cancer Ther, vol.12, pp.1605-1615, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02530614

C. Petti, C. Vegetti, A. Molla, I. Bersani, L. Cleris et al., AMPK activators inhibit the proliferation of human melanomas bearing the activated MAPK pathway, Melanoma Res, vol.22, pp.341-350, 2012.

A. Salminen, K. Kaarniranta, and A. Kauppinen, Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process, vol.14, pp.3834-3859, 2013.

M. Ohanna, S. Giuliano, C. Bonet, V. Imbert, V. Hofman et al., Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome, Genes Dev, vol.25, pp.1245-1261, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530715

O. Kabbarah, C. Nogueira, B. Feng, R. M. Nazarian, M. Bosenberg et al., Integrative genome comparison of primary and metastatic melanomas, PloS one, vol.5, p.10770, 2010.

J. Du, H. R. Widlund, M. A. Horstmann, S. Ramaswamy, K. Ross et al., Critical role of CDK2 for melanoma growth linked to its melanocyte-specific transcriptional regulation by MITF, Cancer Cell, vol.6, pp.565-576, 2004.

Y. Cheli, S. Giuliano, N. Fenouille, A. M. Hofman, V. Hofman et al., Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, vol.31, pp.2461-2470, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02530643

C. Chiaverini, L. Beuret, F. E. Busca, R. , A. P. Bille et al., Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport, J Biol Chem, vol.283, pp.12635-12642, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02358833

T. Strub, S. Giuliano, T. Ye, C. Bonet, C. Keime et al., Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma, Oncogene, vol.30, pp.2319-2332, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530755

J. M. Solomon, R. Pasupuleti, L. Xu, T. Mcdonagh, R. Curtis et al., Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage, Mol Cell Biol, vol.26, pp.28-38, 2006.

C. M. Grozinger, E. D. Chao, H. E. Blackwell, and D. Moazed,

S. L. Schreiber, Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening, J Biol Chem, vol.276, pp.38837-38843, 2001.

K. R. Miller, K. Kelley, R. Tuttle, and S. J. Berberich, HdmX overexpression inhibits oncogene induced cellular senescence, Cell Cycle, vol.9, pp.3376-3382, 2010.

E. Steingrimsson, K. J. Moore, M. L. Lamoreux, A. R. Ferre-d'amare, S. K. Burley et al., Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences, Nat Genet, vol.8, pp.256-263, 1994.

R. King, K. N. Weilbaecher, G. Mcgill, E. Cooley, M. Mihm et al., Microphthalmia transcription factor. A sensitive and specific melanocyte marker for MelanomaDiagnosis, Am J Pathol, vol.155, pp.731-738, 1999.

I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol Cell Biol, vol.18, pp.6930-6938, 1998.

S. Giuliano, Y. Cheli, M. Ohanna, C. Bonet, L. Beuret et al., Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas, Cancer Res, vol.70, pp.3813-3822, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530789

C. X. Deng, SIRT1, is it a tumor promoter or tumor suppressor?, International journal of biological sciences, vol.5, pp.147-152, 2009.

R. H. Wang, K. Sengupta, C. Li, H. S. Kim, L. Cao et al., Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice, Cancer Cell, vol.14, pp.312-323, 2008.

E. K. Nishimura, S. R. Granter, and D. E. Fisher, Mechanisms of Hair Graying: Incomplete Melanocyte Stem Cell Maintenance in the Niche, Science, 2004.

A. B. Lerner, T. Shiohara, R. E. Boissy, K. A. Jacobson, M. L. Lamoreux et al., A mouse model for vitiligo, J Invest Dermatol, vol.87, pp.299-304, 1986.

G. M. Marshall, P. Y. Liu, S. Gherardi, C. J. Scarlett, A. Bedalov et al., SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability, vol.7, p.1002135, 2011.

J. Huang, Q. Gan, L. Han, J. Li, H. Zhang et al., SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts, PloS one, vol.3, p.1710, 2008.

Y. Li, W. Xu, M. W. Mcburney, and V. D. Longo, SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons, Cell metabolism, vol.8, pp.38-48, 2008.

L. Polidoro, G. Properzi, F. Marampon, G. L. Gravina, C. Festuccia et al., Vitamin D protects human endothelial cells from H(2)O(2) oxidant injury through the Mek/Erk-Sirt1 axis activation, Journal of cardiovascular translational research, vol.6, pp.221-231, 2013.

E. M. Van-allen, N. Wagle, A. Sucker, D. J. Treacy, C. M. Johannessen et al., The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma, Cancer discovery, Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF, vol.37, pp.302-315, 2013.

J. Shoag, R. Haq, M. Zhang, L. Liu, G. C. Rowe et al., Arany Z: PGC-1 coactivators regulate MITF and the tanning response, vol.49, pp.145-157, 2013.

L. Bosch-presegue and A. Vaquero, The dual role of sirtuins in cancer, Genes & cancer, vol.2, pp.648-662, 2011.

C. Canto, Z. Gerhart-hines, J. N. Feige, M. Lagouge, L. Noriega et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, pp.1056-1060, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00383329

X. J. Liang, T. Finkel, D. W. Shen, J. J. Yin, A. Aszalos et al., SIRT1 contributes in part to cisplatin resistance in cancer cells by altering mitochondrial metabolism, vol.6, pp.1499-1506, 2008.

L. Larribere, C. Hilmi, M. Khaled, C. Gaggioli, K. Bille et al., The cleavage of microphthalmia associated transcription factor, MITF, by caspases plays an essential role in melanocyte and melanoma cell apoptosis, Genes Dev, vol.19, pp.1980-1985, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-02531076