S. E. Craword, P. Fitchev, D. Veliceasa, and O. V. Volpert, The many facets of PEDF in drug discovery and disease: a diamond in the rough or split personality disorder?, Expert Opin Drug Discov, vol.8, pp.769-792, 2013.

S. P. Becerra and V. Notario, The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential, Nat Rev Cancer, vol.13, pp.258-271, 2013.

J. Tombran-tink and C. J. Barnstable, PEDF: a multifaceted neurotrophic factor, Nat Rev Neurosci, vol.4, pp.628-636, 2003.

D. W. Dawson, O. V. Volpert, P. Gillis, S. E. Crawford, H. Xu et al., Pigment epithelium-derived factor: a potent inhibitor of angiogenesis, Science, vol.285, pp.245-248, 1999.

N. I. Fernandez-garcia, O. V. Volpert, and B. Jimenez, Pigment epitheliumderived factor as a multifunctional antitumor factor, J Mol Med, vol.85, pp.15-22, 2007.

M. Garcia, N. I. Fernandez-garcia, V. Rivas, M. Carretero, M. J. Escamez et al., Inhibition of xenografted human melanoma growth and prevention of metastasis development by dual antiangiogenic/antitumor activities of pigment epitheliumderived factor, Cancer Res, vol.64, pp.5632-5642, 2004.

J. L. Orgaz, O. Ladhani, K. S. Hoek, A. Fernandez-barral, D. Mihic et al., Loss of pigment epithelium-derived factor enables migration, invasion and metastatic spread of human melanoma, Oncogene, vol.28, pp.4147-4161, 2009.

A. Fernandez-barral, J. L. Orgaz, V. Gomez, L. Del-peso, M. J. Calzada et al., Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism, PLoS One, vol.7, p.32989, 2012.

Y. Cheli, M. Ohanna, R. Ballotti, and C. Bertolotto, Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigment Cell Melanoma Res, vol.23, pp.27-40, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530740

C. Levy, M. Khaled, and F. De, MITF: master regulator of melanocyte development and melanoma oncogene, Trends Mol Med, vol.12, pp.406-414, 2006.

W. Hr and D. E. Fisher, Microphthalamia-associated transcription factor: a critical regulator of pigment cell development and survival, Oncogene, vol.22, pp.3035-3041, 2003.

S. Carreira, J. Goodall, L. Denat, M. Rodriguez, P. Nuciforo et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev, vol.20, pp.3426-3439, 2006.

C. R. Goding, Commentary. A picture of Mitf in melanoma immortality, Oncogene, vol.30, pp.2304-2306, 2011.

Y. Cheli, S. Giuliano, T. Botton, S. Rocchi, V. Hofman et al., Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, vol.30, pp.2307-2318, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530763

M. Saez-ayala, M. F. Montenegro, L. Sanchez-del-campo, M. P. Fernandez-perez, S. Chazarra et al., Directed phenotype switching as an effective antimelanoma strategy, Cancer Cell, vol.24, pp.105-119, 2013.

S. Giuliano, Y. Cheli, M. Ohanna, C. Bonet, L. Beuret et al., Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas, Cancer Res, vol.70, pp.3813-3822, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530789

G. Li, H. Schaider, K. Satyamoorthy, Y. Hanakawa, K. Hashimoto et al., Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development, Oncogene, vol.20, pp.8125-8135, 2001.

K. S. Hoek, O. M. Eichhoff, N. C. Schlegel, U. Dobbeling, N. Kobert et al., In vivo switching of human melanoma cells between proliferative and invasive states, Cancer Res, vol.68, pp.650-656, 2008.

K. S. Hoek, N. C. Schlegel, P. Brafford, A. Sucker, S. Ugurel et al., Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature, Pigment Cell Res, vol.19, pp.290-302, 2006.

N. I. Fernandez-garcia, H. G. Palmer, M. Garcia, A. Gonzalez-martin, M. Del-rio et al., 1alpha,25-Dihydroxyvitamin D3 regulates the expression of Id1 and Id2 genes and the angiogenic phenotype of human colon carcinoma cells, Oncogene, vol.24, pp.6533-6544, 2005.

L. L. Scurr, G. M. Pupo, T. M. Becker, K. Lai, D. Schrama et al., IGFBP7 is not required for B-RAF-induced melanocyte senescence, Cell, vol.141, pp.717-727, 2010.

P. Rouhi, L. D. Jensen, Z. Cao, K. Hosaka, T. Lanne et al., Hypoxia-induced metastasis model in embryonic zebrafish, Nat Protoc, vol.5, pp.1911-1918, 2010.

P. Rouhi, S. L. Lee, Z. Cao, E. M. Hedlund, L. D. Jensen et al., Pathological angiogenesis facilitates tumor cell dissemination and metastasis, Cell Cycle, vol.9, pp.913-917, 2010.

T. Strub, S. Giuliano, T. Ye, C. Bonet, C. Keime et al., Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma, Oncogene, vol.30, pp.2319-2332, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530755

L. Delacroix, E. Moutier, G. Altobelli, S. Legras, O. Poch et al., Cell-specific interaction of retinoic acid receptors with target genes in mouse embryonic fibroblasts and embryonic stem cells, Mol Cell Biol, vol.30, pp.231-244, 2010.

D. Kobi, A. L. Steunou, D. Dembele, S. Legras, L. Larue et al., Genome-wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene, Pigment Cell Melanoma Res, vol.23, pp.404-418, 2010.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), 2008.

, Genome Biol, vol.9, p.137

A. Krebs, M. Frontini, and T. L. , GPAT: retrieval of genomic annotation from large genomic position datasets, BMC Bioinformatics, vol.9, p.533, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00368021

M. Rincon and R. A. Flavell, AP-1 transcriptional activity requires both Tcell receptor-mediated and co-stimulatory signals in primary T lymphocytes, EMBO J, vol.13, pp.4370-4381, 1994.

L. A. Garraway, H. R. Widlund, M. A. Rubin, G. Getz, A. J. Berger et al., Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma, Nature, vol.436, pp.117-122, 2005.

J. L. Maldonado, L. Timmerman, J. Fridlyand, and B. Bc, Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway, Am J Pathol, vol.164, pp.1783-1787, 2004.

D. C. Bennett, Human melanocyte senescence and melanoma susceptibility genes, Oncogene, vol.22, pp.3063-3069, 2003.

P. M. Pollock, U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark et al., High frequency of BRAF mutations in nevi, Nat Genet, vol.33, pp.19-20, 2003.

A. J. Miller and M. C. Mihm, N Engl J Med, vol.355, pp.51-65, 2006.

S. Haferkamp and H. Rizos, Oncogene-induced senescence pathways in melanocytes, Cell Cycle, vol.9, pp.4778-4779, 2010.

R. Bansal and M. A. Nikiforov, Pathways of oncogene-induced senescence in human melanocytic cells, Cell Cycle, vol.9, pp.2782-2788, 2010.

Y. Cheli, S. Giuliano, N. Fenouille, A. M. Hofman, V. Hofman et al., Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, vol.31, pp.2461-2470, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02530643

R. Abe, T. Shimizu, S. Yamagishi, A. Shibaki, S. Amano et al., Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo, Am J Pathol, vol.164, pp.1225-1232, 2004.

O. Ladhani, C. Sanchez-martinez, J. L. Orgaz, B. Jimenez, and O. V. Volpert, Pigment epithelium-derived factor blocks tumor extravasation by suppressing amoeboid morphology and mesenchymal proteolysis, Neoplasia, vol.13, pp.633-642, 2011.

Y. Sasaki, Y. Naishiro, Y. Oshima, K. Imai, Y. Nakamura et al., Identification of pigment epithelium-derived factor as a direct target of the p53 family member genes, Oncogene, vol.24, pp.5131-5136, 2005.

J. A. Doll, V. M. Stellmach, N. P. Bouck, A. R. Bergh, C. Lee et al., Pigment epitheliumderived factor regulates the vasculature and mass of the prostate and pancreas, Nat Med, vol.9, pp.774-780, 2003.

L. W. Cheung, S. C. Au, A. N. Cheung, H. Y. Ngan, J. Tombran-tink et al., Pigment epithelium-derived factor is estrogen sensitive and inhibits the growth of human ovarian cancer and ovarian surface epithelial cells, Endocrinology, vol.147, pp.4179-4191, 2006.

J. Tombran-tink, N. Lara, S. E. Apricio, P. Potluri, S. Gee et al., Retinoic acid and dexamethasone regulate the expression of PEDF in retinal and endothelial cells, Exp Eye Res, vol.78, pp.945-955, 2004.

H. Uchida, H. Hayashi, M. Kuroki, K. Uno, H. Yamada et al., Vitamin A up-regulates the expression of thrombospondin-1 and pigment epithelium-derived factor in retinal pigment epithelial cells, Exp Eye Res, vol.80, pp.23-30, 2005.

D. J. Schwahn, W. Xu, A. B. Herrin, E. S. Bales, and E. E. Medrano, Tyrosine levels regulate the melanogenic response to alpha-melanocyte-stimulating hormone in human melanocytes: implications for pigmentation and proliferation, Pigment Cell Res, vol.14, pp.32-39, 2001.

D. J. Schwahn, N. A. Timchenko, S. Shibahara, and E. E. Medrano, Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes, Pigment Cell Res, vol.18, pp.203-213, 2005.

W. Cao, J. Tombran-tink, W. Chen, D. Mrazek, R. Elias et al., Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death, J Neurosci Res, vol.57, pp.789-800, 1999.

S. Yamagishi, Y. Inagaki, S. Amano, T. Okamoto, M. Takeuchi et al., Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties, Biochem Biophys Res Commun, vol.296, pp.877-882, 2002.

S. Yamagishi, Y. Inagaki, K. Nakamura, R. Abe, T. Shimizu et al., Pigment epithelium-derived factor inhibits TNF-alphainduced interleukin-6 expression in endothelial cells by suppressing NADPH oxidase-mediated reactive oxygen species generation, J Mol Cell Cardiol, vol.37, pp.497-506, 2004.

K. Nakamura, S. Yamagishi, T. Matsui, T. Yoshida, K. Takenaka et al., Pigment epitheliumderived factor inhibits neointimal hyperplasia after vascular injury by blocking NADPH oxidase-mediated reactive oxygen species generation, Am J Pathol, vol.170, pp.2159-2170, 2007.

Y. Cao, T. Yang, C. Gu, and Y. D. , Pigment epithelium-derived factor delays cellular senescence of human mesenchymal stem cells in vitro by reducing oxidative stress, Cell Biol Int, vol.37, pp.305-313, 2013.

T. Kuilman, C. Michaloglou, L. C. Vredeveld, S. Douma, R. Van-doorn et al., Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network, Cell, vol.133, pp.1019-1031, 2008.

J. L. Orgaz, A. Benguria, C. Sanchez-martinez, O. Ladhani, O. V. Volpert et al., Changes in the gene expression profile of A375 human melanoma cells induced by overexpression of multifunctional pigment epithelium-derived factor, Melanoma Res, vol.21, pp.285-297, 2011.

X. Ma, L. Pan, J. X. Dai, X. Li, H. Wen et al., Microphthalmia-associated transcription factor acts through PEDF to regulate RPE cell migration, Exp Cell Res, vol.318, pp.251-261, 2012.