M. G. Rughani, A. Gupta, and M. R. Middleton, New treatment approaches in melanoma: current research and clinical prospects. Therapeutic advances in medical oncology, vol.5, pp.73-80, 2013.

A. Kauffmann, High expression of DNA repair pathways is associated with metastasis in melanoma patients, Oncogene, vol.27, pp.565-573, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00281489

V. Winnepenninckx, Gene expression profiling of primary cutaneous melanoma and clinical outcome, J Natl Cancer Inst, vol.98, pp.472-482, 2006.

N. Hosoya and K. Miyagawa, Targeting DNA damage response in cancer therapy, Cancer science, vol.105, pp.370-388, 2014.

K. W. Kinzler and B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers, Nature, vol.386, p.763, 1997.

M. Bogliolo and J. Surralles, Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics, Curr Opin Genet Dev, vol.33, pp.32-40, 2015.

A. Constantinou, Rescue of replication failure by Fanconi anaemia proteins, Chromosoma, vol.121, pp.21-36, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00668756

V. Naim and F. Rosselli, The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities, Nat Cell Biol, vol.11, pp.761-768, 2009.

H. Walden and A. J. Deans, The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder, Annual review of biophysics, vol.43, pp.257-278, 2014.

L. C. Wang, S. Stone, M. E. Hoatlin, and J. Gautier, Fanconi anemia proteins stabilize replication forks, DNA repair, vol.7, 1973.

S. D. Chirnomas and G. M. Kupfer, The inherited bone marrow failure syndromes, Pediatric clinics of North America, vol.60, pp.1291-1310, 2013.

C. Bertolotto, A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma, Nature, vol.480, pp.94-98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01791271

S. Carreira, Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev, vol.20, pp.3426-3439, 2006.

M. L. Hartman and M. Czyz, MITF in melanoma: mechanisms behind its expression and activity. Cellular and molecular life sciences: CMLS 72, pp.1249-1260, 2015.

R. King, Microphthalmia transcription factor. A sensitive and specific melanocyte marker for MelanomaDiagnosis, Am J Pathol, vol.155, pp.731-738, 1999.

F. Bringold and M. Serrano, Tumor suppressors and oncogenes in cellular senescence, Experimental gerontology, vol.35, pp.317-329, 2000.

J. Campisi, Aging, cellular senescence, and cancer. Annual review of physiology 75, pp.685-705, 2013.

A. Carnero, Markers of cellular senescence, Methods Mol Biol, vol.965, pp.63-81, 2013.

S. Giuliano, M. Ohanna, R. Ballotti, and C. Bertolotto, Advances in melanoma senescence and potential clinical application, Pigment Cell Melanoma Res, vol.24, pp.295-308, 2011.

I. Aksan and C. R. Goding, Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor to a subset of E-box elements in vitro and in vivo, Mol Cell Biol, vol.18, pp.6930-6938, 1998.

Y. Cheli, M. Ohanna, R. Ballotti, and C. Bertolotto, Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigment Cell Melanoma Res, vol.23, pp.27-40, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530740

D. Bogunovic, Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival, Proc Natl Acad Sci, vol.106, pp.20429-20434, 2009.

D. M. Bello, C. E. Ariyan, and R. D. Carvajal, Melanoma mutagenesis and aberrant cell signaling, Cancer control: journal of the Moffitt Cancer Center, vol.20, pp.261-281, 2013.

C. Garbe, S. Abusaif, T. K. Eigentler, and . Vemurafenib, Recent results in cancer research, Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, vol.201, pp.215-225, 2014.

T. Strub, Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma, Oncogene, vol.30, pp.2319-2332, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530755

X. Renaudin, J. H. Guervilly, S. Aoufouchi, and F. Rosselli, Proteomic analysis reveals a FANCA-modulated neddylation pathway involved in CXCR5 membrane targeting and cell mobility, J Cell Sci, vol.127, pp.3546-3554, 2014.

S. Giuliano, Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas, Cancer Res, vol.70, pp.3813-3822, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530789

K. S. Hoek, Novel MITF targets identified using a two-step DNA microarray strategy, Pigment Cell Melanoma Res, vol.21, pp.665-676, 2008.

P. A. Sotiropoulou, Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damageinduced cell death, Nat Cell Biol, vol.12, pp.572-582, 2010.

M. Ohanna, Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS), Genes Dev, vol.25, pp.1245-1261, 2011.

F. Debacq-chainiaux, J. D. Erusalimsky, J. Campisi, and O. Toussaint, Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo, Nature protocols, vol.4, pp.1798-1806, 2009.