M. F. Berger, E. Hodis, T. P. Heffernan, Y. L. Deribe, M. S. Lawrence et al., Melanoma genome sequencing reveals frequent PREX2 mutations, Nature, vol.485, pp.502-506, 2012.

E. Hodis, I. R. Watson, G. V. Kryukov, S. T. Arold, M. Imielinski et al., A landscape of driver mutations in melanoma, Cell, vol.150, pp.251-263, 2012.

M. Krauthammer, Y. Kong, A. Bacchiocchi, P. Evans, N. Pornputtapong et al., Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas, Nat Genet, vol.47, pp.996-1002, 2015.

M. Krauthammer, Y. Kong, B. H. Ha, P. Evans, A. Bacchiocchi et al., Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma, Nat Genet, vol.44, pp.1006-1014, 2012.

T. Network, Genomic Classification of Cutaneous Melanoma, Cell, vol.161, pp.1681-1696, 2015.

H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins et al., Mutations of the BRAF gene in human cancer, Nature, vol.417, pp.949-954, 2002.

P. M. Pollock and P. S. Meltzer, A genome-based strategy uncovers frequent BRAF mutations in melanoma, Cancer Cell, vol.2, pp.5-7, 2002.

M. A. Davies, K. Stemke-hale, C. Tellez, T. L. Calderone, W. Deng et al., A novel AKT3 mutation in melanoma tumours and cell lines, Br J Cancer, vol.99, pp.1265-1268, 2008.

H. Wu, V. Goel, and F. G. Haluska, PTEN signaling pathways in melanoma, Oncogene, vol.22, pp.3113-3122, 2003.

L. Larue and V. Delmas, The WNT/Beta-catenin pathway in melanoma, Frontiers in bioscience : a journal and virtual library, vol.11, pp.733-742, 2006.

B. Rubinfeld, P. Robbins, M. El-gamil, A. I. Porfiri, E. Polakis et al., Stabilization of beta-catenin by genetic defects in melanoma cell lines, Science, vol.275, pp.1790-1792, 1997.

M. J. Davis, B. H. Ha, E. C. Holman, R. Halaban, J. Schlessinger et al., RAC1P29S is a spontaneously activating cancer-associated GTPase, Proc Natl Acad Sci U S A, vol.110, pp.912-917, 2013.

A. Li, Y. Ma, J. M. Mason, S. Mort, R. L. Blyth et al., Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism, J Invest Dermatol, vol.132, pp.2610-2621, 2012.

L. M. Machesky and O. J. Sansom, Rac1 in the driver's seat for melanoma, Pigment Cell Melanoma Res, vol.25, pp.762-764, 2012.

Y. Xue, N. L. Li, J. Y. Yang, Y. Chen, L. L. Yang et al., Phosphatidylinositol 3'-kinase signaling pathway is essential for Rac1-induced hypoxia-inducible factor-1(alpha) and vascular endothelial growth factor expression, American journal of physiology Heart and circulatory physiology, vol.300, pp.2169-2176, 2011.

R. Arafeh, N. Qutob, R. Emmanuel, K. , A. Madore et al., Recurrent inactivating RASA2 mutations in melanoma, Nat Genet, vol.47, pp.1408-1410, 2015.

, Cancer Genome Atlas N. Genomic Classification of Cutaneous Melanoma. Cell, vol.161, pp.1681-1696, 2015.

C. Pandiani, G. E. Beranger, J. Leclerc, R. Ballotti, and C. Bertolotto, Focus on cutaneous and uveal melanoma specificities, Genes Dev, vol.31, pp.724-743, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02529958

J. Villanueva, J. R. Infante, C. Krepler, P. Reyes-uribe, M. Samanta et al., Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma, Cell reports, vol.4, pp.1090-1099, 2013.

P. M. Pollock, U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark et al., High frequency of BRAF mutations in nevi, Nat Genet, vol.33, pp.19-20, 2003.

J. Bauer, J. A. Curtin, D. Pinkel, and B. C. Bastian, Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations, J Invest Dermatol, vol.127, pp.179-182, 2007.

B. C. Bastian, P. E. Leboit, and D. Pinkel, Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features, Am J Pathol, vol.157, pp.967-972, 2000.

T. Kuilman, C. Michaloglou, W. J. Mooi, and D. S. Peeper, The essence of senescence, Genes Dev, vol.24, pp.2463-2479, 2010.

V. C. Gray-schopfer, S. C. Cheong, H. Chong, J. Chow, T. Moss et al., Cellular senescence in naevi and immortalisation in melanoma: a role for p16?, Br J Cancer, vol.95, pp.496-505, 2006.

M. Ross, A. D. Cook, M. G. Chong, H. Hossain, M. Pandha et al., Senescence evasion in melanoma progression: uncoupling of DNA-damage signaling from p53 activation and p21 expression, Pigment Cell Melanoma Res, vol.26, pp.226-235, 2013.

S. Tran and H. Rizos, Human nevi lack distinguishing senescence traits, Aging, vol.5, pp.98-99, 2013.

S. L. Tran and H. Rizos, Monitoring oncogenic B-RAF-induced senescence in melanocytes, Methods Mol Biol, vol.965, pp.313-326, 2013.

C. Michaloglou, L. C. Vredeveld, M. S. Soengas, C. Denoyelle, T. Kuilman et al., BRAFE600-associated senescence-like cell cycle arrest of human naevi, Nature, vol.436, pp.720-724, 2005.

D. Zhuang, S. Mannava, V. Grachtchouk, W. H. Tang, S. Patil et al., C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells, Oncogene, vol.27, pp.6623-6634, 2008.

C. Denoyelle, G. Abou-rjaily, V. Bezrookove, M. Verhaegen, T. M. Johnson et al., Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway, Nat Cell Biol, vol.8, pp.1053-1063, 2006.

L. Larribere, H. Wu, D. Novak, M. Galach, M. Bernhardt et al., NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model, Pigment Cell Melanoma Res, vol.28, pp.407-416, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02530560

S. Haferkamp, S. L. Tran, T. M. Becker, L. L. Scurr, R. F. Kefford et al., The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence, Aging, vol.1, pp.542-556, 2009.

L. C. Vredeveld, P. A. Possik, M. A. Smit, K. Meissl, C. Michaloglou et al., Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis, Genes Dev, vol.26, pp.1055-1069, 2012.

A. S. Mcneal, K. Liu, V. Nakhate, C. A. Natale, E. K. Duperret et al., CDKN2B Loss Promotes Progression from Benign Melanocytic Nevus to Melanoma, Cancer discovery, vol.5, pp.1072-1085, 2015.

N. Wajapeyee, R. W. Serra, X. Zhu, M. Mahalingam, and M. R. Green, Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7, Cell, vol.132, pp.363-374, 2008.

L. L. Scurr, G. M. Pupo, T. M. Becker, K. Lai, D. Schrama et al., IGFBP7 is not required for B-RAF-induced melanocyte senescence, Cell, vol.141, pp.717-727, 2010.

T. Kuilman, C. Michaloglou, L. C. Vredeveld, S. Douma, R. Van-doorn et al., Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network, Cell, vol.133, pp.1019-1031, 2008.

T. Kuilman and D. S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress, Nat Rev Cancer, vol.9, pp.81-94, 2009.

V. K. Goel, N. Ibrahim, G. Jiang, M. Singhal, S. Fee et al., Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice, Oncogene, vol.28, pp.2289-2298, 2009.

E. E. Patton, H. R. Widlund, J. L. Kutok, K. R. Kopani, J. F. Amatruda et al., BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma, Curr Biol, vol.15, pp.249-254, 2005.

D. Dankort, D. P. Curley, R. A. Cartlidge, B. Nelson, A. N. Karnezis et al., Braf(V600E) cooperates with Pten loss to induce metastatic melanoma, Nat Genet, vol.41, pp.544-552, 2009.

N. Dhomen, J. S. Reis-filho, S. Da-rocha-dias, R. Hayward, K. Savage et al., Oncogenic Braf induces melanocyte senescence and melanoma in mice, Cancer Cell, vol.15, pp.294-303, 2009.

J. Ackermann, M. Frutschi, K. Kaloulis, T. Mckee, A. Trumpp et al., Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background, Cancer Res, vol.65, pp.4005-4011, 2005.

J. Bartek, J. Lukas, and J. Bartkova, DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency', Cell Cycle, vol.6, pp.2344-2347, 2007.

D. Micco, R. Fumagalli, M. Cicalese, A. Piccinin, S. Gasparini et al., Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication, Nature, vol.444, pp.638-642, 2006.

F. A. Mallette, M. F. Gaumont-leclerc, and G. Ferbeyre, The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence, Genes Dev, vol.21, pp.43-48, 2007.

P. Abdallah, P. Luciano, K. W. Runge, M. Lisby, V. Geli et al., A two-step model for senescence triggered by a single critically short telomere, Nat Cell Biol, vol.11, pp.988-993, 2009.

V. Bataille, B. S. Kato, M. Falchi, J. Gardner, M. Kimura et al., Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer epidemiology, biomarkers & prevention : a publication of the, American Society of Preventive Oncology, vol.16, pp.1499-1502, 2007.

A. Suram, J. Kaplunov, P. L. Patel, H. Ruan, A. Cerutti et al., Oncogeneinduced telomere dysfunction enforces cellular senescence in human cancer precursor lesions, EMBO J, vol.31, pp.2839-2851, 2012.

B. C. Bastian, The longer your telomeres, the larger your nevus?, Am J Dermatopathol, vol.25, pp.83-84, 2003.

D. C. Bennett, Genetics of melanoma progression: the rise and fall of cell senescence, Pigment Cell Melanoma Res, vol.29, pp.122-140, 2016.

B. C. Bastian, The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia, Annual review of pathology, vol.9, pp.239-271, 2014.

I. Ben-porath and R. A. Weinberg, The signals and pathways activating cellular senescence, The international journal of biochemistry & cell biology, vol.37, pp.961-976, 2005.

A. A. Neumann and R. R. Reddel, Telomere maintenance and cancer --look, no telomerase, Nat Rev Cancer, vol.2, pp.879-884, 2002.

A. Conde-perez, G. Gros, C. Longvert, M. Pedersen, V. Petit et al., A caveolindependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity, Nature communications, vol.6, p.8093, 2015.

V. Delmas, F. Beermann, S. Martinozzi, S. Carreira, J. Ackermann et al., Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development, Genes Dev, vol.21, pp.2923-2935, 2007.

S. Haferkamp, T. M. Becker, L. L. Scurr, and R. F. Kefford, Rizos H. p16INK4a-induced senescence is disabled by melanoma-associated mutations, Aging Cell, vol.7, pp.733-745, 2008.

A. Viros, B. Sanchez-laorden, M. Pedersen, S. J. Furney, R. J. Hogan et al., Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53, Nature, vol.511, pp.478-482, 2014.

S. Zhu, H. Wurdak, Y. Wang, A. Galkin, H. Tao et al., A genomic screen identifies TYRO3 as a MITF regulator in melanoma, Proc Natl Acad Sci U S A, vol.106, pp.17025-17030, 2009.

S. Mannava, A. R. Omilian, J. A. Wawrzyniak, E. E. Fink, D. Zhuang et al., PP2A-B56alpha controls oncogene-induced senescence in normal and tumor human melanocytic cells, Oncogene, vol.31, pp.1484-1492, 2012.

N. F. Box, D. L. Duffy, W. Chen, M. Stark, N. G. Martin et al., MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations, Am J Hum Genet, vol.69, pp.765-773, 2001.

F. Demenais, H. Mohamdi, V. Chaudru, A. M. Goldstein, N. Bishop et al., Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study, J Natl Cancer Inst, vol.102, pp.1568-1583, 2010.

L. G. Aoude, K. A. Wadt, A. L. Pritchard, and N. K. Hayward, Genetics of familial melanoma: 20 years after CDKN2A, Pigment Cell Melanoma Res, vol.28, pp.148-160, 2015.

N. A. Gruis, P. A. Van-der-velden, L. A. Sandkuijl, D. E. Prins, J. Weaver-feldhaus et al., Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds, Nat Genet, vol.10, pp.351-353, 1995.

H. Rizos, S. Puig, C. Badenas, J. Malvehy, A. P. Darmanian et al., A melanoma-associated germline mutation in exon 1beta inactivates p14ARF, Oncogene, vol.20, pp.5543-5547, 2001.

C. J. Sherr, D. Beach, and G. I. Shapiro, Targeting CDK4 and CDK6: From Discovery to Therapy, Cancer discovery, vol.6, pp.353-367, 2016.

S. Basu and M. E. Murphy, Genetic Modifiers of the p53 Pathway. Cold Spring Harbor perspectives in medicine, vol.6, p.26302, 2016.

L. Zuo, J. Weger, Q. Yang, A. M. Goldstein, M. A. Tucker et al., Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma, Nat Genet, vol.12, pp.97-99, 1996.

E. V. Sviderskaya, V. C. Gray-schopfer, S. P. Hill, N. P. Smit, T. J. Evans-whipp et al., p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression, J Natl Cancer Inst, vol.95, pp.723-732, 2003.

E. V. Sviderskaya, S. P. Hill, T. J. Evans-whipp, L. Chin, S. J. Orlow et al., p16(Ink4a) in melanocyte senescence and differentiation, J Natl Cancer Inst, vol.94, pp.446-454, 2002.

L. Ha, T. Ichikawa, M. Anver, R. Dickins, S. Lowe et al., ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence, Proc Natl Acad Sci U S A, vol.104, pp.10968-10973, 2007.

C. J. Sherr and F. Mccormick, The RB and p53 pathways in cancer, Cancer Cell, vol.2, pp.103-112, 2002.

C. Fung, G. M. Pupo, R. A. Scolyer, R. F. Kefford, and H. Rizos, p16(INK) (4a) deficiency promotes DNA hyper-replication and genetic instability in melanocytes, Pigment Cell Melanoma Res, vol.26, pp.236-246, 2013.

T. Terzian, E. C. Torchia, D. Dai, S. E. Robinson, K. Murao et al., p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation, Pigment Cell Melanoma Res, 2010.

C. Christensen, J. Bartkova, M. Mistrik, A. Hall, M. K. Lange et al., A short acidic motif in ARF guards against mitochondrial dysfunction and melanoma susceptibility, Nature communications, vol.5, p.5348, 2014.

C. Hewitt, L. Wu, C. Evans, G. Howell, A. Elles et al., Germline mutation of ARF in a melanoma kindred, Hum Mol Genet, vol.11, pp.1273-1279, 2002.

S. Meierjohann, Oxidative stress in melanocyte senescence and melanoma transformation, European journal of cell biology, vol.93, pp.36-41, 2014.

J. F. Passos, G. Nelson, C. Wang, T. Richter, C. Simillion et al., Feedback between p21 and reactive oxygen production is necessary for cell senescence, Mol Syst Biol, vol.6, p.347, 2010.

M. Carbone, H. Yang, H. I. Pass, T. Krausz, J. R. Testa et al., BAP1 and cancer, Nat Rev Cancer, vol.13, pp.153-159, 2013.

C. D. Robles-espinoza, C. Velasco-herrera-mdel, N. K. Hayward, and D. J. Adams, Telomereregulating genes and the telomere interactome in familial cancers, Molecular cancer research : MCR, vol.13, pp.211-222, 2015.

C. Bertolotto, F. Lesueur, S. Giuliano, T. Strub, M. De-lichy et al., A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma, Nature, vol.480, pp.94-98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719536

P. Ghiorzo, L. Pastorino, P. Queirolo, W. Bruno, M. G. Tibiletti et al., Prevalence of the E318K MITF germline mutation in Italian melanoma patients: associations with histological subtypes and family cancer history, Pigment Cell Melanoma Res, vol.26, pp.259-262, 2013.

R. A. Sturm, C. Fox, P. Mcclenahan, K. Jagirdar, M. Ibarrola-villava et al., Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients, J Invest Dermatol, vol.134, pp.141-149, 2014.

S. Yokoyama, S. L. Woods, G. M. Boyle, L. G. Aoude, S. Macgregor et al., A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma, Nature, vol.480, pp.99-103, 2011.

C. Bertolotto, A. P. Hemesath, T. J. Bille, K. Fisher, D. E. Ortonne et al., Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes, J Cell Biol, vol.142, pp.827-835, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-02532974

P. Valverde, E. Healy, J. I. Rees, J. L. Thody, and A. J. , Variants of the melanocytestimulating hormone receptor gene are associated with red hair and fair skin in humans, Nat Genet, vol.11, pp.328-330, 1995.

S. G. Jarrett, W. Horrell, E. M. Boulanger, M. C. , D. Orazio et al., Defining the Contribution of MC1R Physiological Ligands to ATR Phosphorylation at Ser435, a Predictor of DNA Repair in Melanocytes, J Invest Dermatol, vol.135, pp.3086-3095, 2015.

V. Swope, C. Alexander, R. Starner, S. Schwemberger, G. Babcock et al., Significance of the melanocortin 1 receptor in the DNA damage response of human melanocytes to ultraviolet radiation, Pigment Cell Melanoma Res, vol.27, pp.601-610, 2014.

J. Cao, L. Wan, E. Hacker, X. Dai, S. Lenna et al., MC1R is a potent regulator of PTEN after UV exposure in melanocytes, Mol Cell, vol.51, pp.409-422, 2013.

E. Steingrimsson, N. G. Copeland, and N. A. Jenkins, Melanocytes and the microphthalmia transcription factor network, Annu Rev Genet, vol.38, pp.365-411, 2004.

C. Bertolotto, R. Busca, A. P. Bille, K. Aberdam, E. Ortonne et al., Different cisacting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia, Mol Cell Biol, vol.18, pp.694-702, 1998.

Y. Cheli, M. Ohanna, R. Ballotti, and C. Bertolotto, Fifteen-year quest for microphthalmia-associated transcription factor target genes, Pigment Cell Melanoma Res, vol.23, pp.27-40, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530740

L. A. Garraway, H. R. Widlund, M. A. Rubin, G. Getz, A. J. Berger et al., Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma, Nature, vol.436, pp.117-122, 2005.

C. M. Johannessen, L. A. Johnson, F. Piccioni, A. Townes, D. T. Frederick et al., A melanocyte lineage program confers resistance to MAP kinase pathway inhibition, Nature, vol.504, pp.138-142, 2013.

D. J. Konieczkowski, C. M. Johannessen, O. Abudayyeh, J. W. Kim, Z. A. Cooper et al., A Melanoma Cell State Distinction Influences Sensitivity to MAPK Pathway Inhibitors. Cancer discovery, 2014.

J. Muller, O. Krijgsman, J. Tsoi, L. Robert, W. Hugo et al., Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma, Nature communications, vol.5, p.5712, 2014.

E. M. Van-allen, N. Wagle, A. Sucker, D. J. Treacy, C. M. Johannessen et al., The Genetic Landscape of Clinical Resistance to RAF Inhibition in Metastatic Melanoma, Cancer discovery, 2013.

P. Falletta, L. Sanchez-del-campo, J. Chauhan, M. Effern, A. Kenyon et al., Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma, Genes Dev, 2017.

S. Riesenberg, A. Groetchen, R. Siddaway, T. Bald, J. Reinhardt et al., MITF and c-Jun antagonism interconnects melanoma dedifferentiation with proinflammatory cytokine responsiveness and myeloid cell recruitment, Nature communications, vol.6, p.8755, 2015.

S. Carreira, J. Goodall, L. Denat, M. Rodriguez, P. Nuciforo et al., Mitf regulation of Dia1 controls melanoma proliferation and invasiveness, Genes Dev, vol.20, pp.3426-3439, 2006.

M. Potrony, J. A. Puig-butille, P. Aguilera, C. Badenas, G. Tell-marti et al., Prevalence of MITF p.E318K in Patients With Melanoma Independent of the Presence of CDKN2A Causative Mutations, JAMA dermatology, vol.152, pp.405-412, 2016.

C. Bonet, F. Luciani, J. F. Ottavi, J. Leclerc, F. M. Jouenne et al., Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression, J Natl Cancer Inst, vol.109, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02529960

A. J. Miller, C. Levy, I. J. Davis, E. Razin, and D. E. Fisher, Sumoylation of MITF and its related family members TFE3 and TFEB, J Biol Chem, vol.280, pp.146-155, 2005.

H. Murakami and H. Arnheiter, Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner, Pigment Cell Res, vol.18, pp.265-277, 2005.

K. A. Wilkinson and J. M. Henley, Mechanisms, regulation and consequences of protein SUMOylation, Biochem J, vol.428, pp.133-145, 2010.

J. R. Gareau and C. D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition, Nat Rev Mol Cell Biol, vol.11, pp.861-871, 2010.

C. Levy, A. Sonnenblick, and E. Razin, Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3, Mol Cell Biol, vol.23, pp.9073-9080, 2003.

A. Sonnenblick, C. Levy, and E. Razin, Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes, Mol Cell Biol, vol.24, pp.10584-10592, 2004.

Y. Q. Zhang and K. D. Sarge, Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies, J Cell Biol, vol.182, pp.35-39, 2008.

J. C. Walrath, J. J. Hawes, T. Van-dyke, and K. M. Reilly, Genetically engineered mouse models in cancer research, Advances in cancer research, vol.106, pp.113-164, 2010.

H. Tsao, V. Goel, H. Wu, G. Yang, and F. G. Haluska, Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma, J Invest Dermatol, vol.122, pp.337-341, 2004.

M. Jafri, N. C. Wake, D. B. Ascher, D. E. Pires, D. Gentle et al., Germline Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma, Cancer discovery, vol.5, pp.723-729, 2015.

B. Bressac-de-paillerets, F. Lesueur, and C. Bertolotto, A germline oncogenic MITF mutation and tumor susceptibility, European journal of cell biology, 2013.

H. R. Widlund, M. A. Horstmann, E. R. Price, J. Cui, S. L. Lessnick et al., Betacatenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor, J Cell Biol, vol.158, pp.1079-1087, 2002.

W. E. Damsky, D. P. Curley, M. Santhanakrishnan, L. E. Rosenbaum, J. T. Platt et al., beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas, Cancer Cell, vol.20, pp.741-754, 2011.

A. M. Andreou and N. Tavernarakis, SUMOylation and cell signalling, Biotechnology journal, vol.4, pp.1740-1752, 2009.

A. M. Andreou and N. Tavernarakis, Roles for SUMO modification during senescence, Adv Exp Med Biol, vol.694, pp.160-171, 2010.

J. S. Seeler and A. Dejean, SUMO and the robustness of cancer, Nat Rev Cancer, vol.17, pp.184-197, 2017.

C. Jhappan, F. P. Noonan, and G. Merlino, Ultraviolet radiation and cutaneous malignant melanoma, Oncogene, vol.22, pp.3099-3112, 2003.

B. Bedogni and M. B. Powell, Skin hypoxia: a promoting environmental factor in melanomagenesis, Cell Cycle, vol.5, pp.1258-1261, 2006.

G. Bossis, J. E. Sarry, C. Kifagi, M. Ristic, E. Saland et al., The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs, Cell reports, vol.7, pp.1815-1823, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02191559

L. L. Scurr, S. Haferkamp, and H. Rizos, The Role of Sumoylation in Senescence, Adv Exp Med Biol, vol.963, pp.215-226, 2017.

P. Lowings, U. Yavuzer, and C. R. Goding, Positive and negative elements regulate a melanocyte-specific promoter, Mol Cell Biol, vol.12, pp.3653-3662, 1992.

C. Robert, J. Schachter, G. V. Long, A. Arance, J. J. Grob et al., Pembrolizumab versus Ipilimumab in Advanced Melanoma, N Engl J Med, vol.372, pp.2521-2532, 2015.

L. Tentori, P. M. Lacal, and G. Graziani, Challenging resistance mechanisms to therapies for metastatic melanoma, Trends Pharmacol Sci, vol.34, pp.656-666, 2013.

J. D. Kessler, K. T. Kahle, T. Sun, K. L. Meerbrey, M. R. Schlabach et al., A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis, Science, vol.335, pp.348-353, 2012.

B. Yu, S. Swatkoski, A. Holly, L. C. Lee, V. Giroux et al., Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9, Proc Natl Acad Sci U S A, vol.112, pp.1724-1733, 2015.

A. Kumar and K. Y. Zhang, Advances in the development of SUMO specific protease (SENP) inhibitors, Computational and structural biotechnology journal, vol.13, pp.204-211, 2015.

R. Zhao, B. Y. Choi, M. H. Lee, A. M. Bode, and Z. Dong, Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in Cancer, EBioMedicine, vol.8, pp.30-39, 2016.

S. Giuliano, Y. Cheli, M. Ohanna, C. Bonet, L. Beuret et al., Microphthalmiaassociated transcription factor controls the DNA damage response and a lineagespecific senescence program in melanomas, Cancer Res, vol.70, pp.3813-3822, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02530789

M. Ohanna, S. Giuliano, C. Bonet, V. Imbert, V. Hofman et al., Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome
URL : https://hal.archives-ouvertes.fr/inserm-02530715

, Genes Dev, vol.25, pp.1245-1261, 2011.

T. Strub, S. Giuliano, T. Ye, C. Bonet, C. Keime et al., Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma, Oncogene, vol.30, pp.2319-2332, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530755

C. A. Schmitt, J. S. Fridman, M. Yang, S. Lee, E. Baranov et al., A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy, Cell, vol.109, pp.335-346, 2002.

R. H. Te-poele, A. L. Okorokov, L. Jardine, J. Cummings, and S. P. Joel, DNA damage is able to induce senescence in tumor cells in vitro and in vivo, Cancer Res, vol.62, pp.1876-1883, 2002.

Y. Liu, O. E. Hawkins, Y. Su, A. E. Vilgelm, T. Sobolik et al., Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence, EMBO molecular medicine, vol.5, pp.149-166, 2013.

W. Xue, L. Zender, C. Miething, R. A. Dickins, H. E. Krizhanovsky et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas, Nature, vol.445, pp.656-660, 2007.

J. R. Dorr, Y. Yu, M. Milanovic, G. Beuster, C. Zasada et al., Synthetic lethal metabolic targeting of cellular senescence in cancer therapy, Nature, 2013.

C. M. Beausejour, A. Krtolica, F. Galimi, M. Narita, S. W. Lowe et al., Reversal of human cellular senescence: roles of the p53 and p16 pathways, Embo J, vol.22, pp.4212-4222, 2003.

J. P. Coppe, P. Y. Desprez, A. Krtolica, and J. Campisi, The senescence-associated secretory phenotype: the dark side of tumor suppression, Annual review of pathology, vol.5, pp.99-118, 2010.

F. Rodier, J. P. Coppe, C. K. Patil, W. A. Hoeijmakers, D. P. Munoz et al., Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion, Nat Cell Biol, vol.11, pp.973-979, 2009.

J. C. Acosta, A. O'loghlen, A. Banito, M. V. Guijarro, A. Augert et al., Chemokine signaling via the CXCR2 receptor reinforces senescence, Cell, vol.133, pp.1006-1018, 2008.

M. Ohanna, Y. Cheli, C. Bonet, V. F. Bonazzi, A. M. Giuliano et al., Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype, Oncotarget, vol.4, pp.2212-2224, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02530603

A. F. Olumi, G. D. Grossfeld, S. W. Hayward, P. R. Carroll, T. D. Tlsty et al., Carcinomaassociated fibroblasts direct tumor progression of initiated human prostatic epithelium, Cancer Res, vol.59, pp.5002-5011, 1999.

J. P. Coppe, F. Rodier, C. K. Patil, A. Freund, P. Y. Desprez et al., Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype, J Biol Chem, vol.286, pp.36396-36403, 2011.

J. Chang, Y. Wang, L. Shao, R. M. Laberge, M. Demaria et al., Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice, Nat Med, vol.22, pp.78-83, 2016.

D. J. Baker, T. Wijshake, T. Tchkonia, N. K. Lebrasseur, B. G. Childs et al., Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders, Nature, vol.479, pp.232-236, 2011.

M. P. Baar, R. M. Brandt, D. A. Putavet, J. D. Klein, K. W. Derks et al., Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging, Cell, vol.169, pp.132-147, 2017.

J. L. Kirkland and T. Tchkonia, Clinical strategies and animal models for developing senolytic agents, Experimental gerontology, vol.68, pp.19-25, 2015.

Y. Zhu, T. Tchkonia, T. Pirtskhalava, A. C. Gower, H. Ding et al., The Achilles' heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, vol.14, pp.644-658, 2015.

Y. Zhu, T. Tchkonia, H. Fuhrmann-stroissnigg, H. M. Dai, Y. Y. Ling et al., Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors, Aging Cell, vol.15, pp.428-435, 2016.

S. Haferkamp, A. Borst, C. Adam, T. M. Becker, S. Motschenbacher et al., Vemurafenib induces senescence features in melanoma cells, J Invest Dermatol, vol.133, pp.1601-1609, 2013.