K. Sadoul, C. Joubert, and S. Michallet, Sur la voie du déchiffrage du code tubuline : le point sur l'acétylation et la détyrosination, Med Sci, vol.34, pp.1047-55, 2018.

H. S. Barra, C. A. Arce, and C. E. Argarana, Posttranslational tyrosination/detyrosination of tubulin, Mol Neurobiol, vol.2, pp.133-53, 1988.

C. Aillaud, C. Bosc, and Y. Saoudi, Evidence for new C-terminally truncated variants of alpha-and betatubulins, Mol Biol Cell, vol.27, pp.640-53, 2016.

L. Lafanechere and D. Job, The third tubulin pool, Neurochem Res, vol.25, pp.11-19, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02349638

L. Peris, M. Wagenbach, and L. Lafanechere, Motordependent microtubule disassembly driven by tubulin tyrosination, J Cell Biol, vol.185, pp.1159-66, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410220

C. Erck, L. Peris, and A. Andrieux, A vital role of tubulintyrosine-ligase for neuronal organization, Proc Natl Acad Sci, vol.102, pp.7853-7861, 2005.

M. E. Hallak, J. A. Rodriguez, and H. S. Barra, Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin, FEBS Lett, vol.73, pp.147-50, 1977.

C. Aillaud, C. Bosc, and L. Peris, Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation, Science, vol.358, pp.1448-53, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02345845

L. Sanchez-pulido and C. P. Ponting, Vasohibins: new transglutaminase-like cysteine proteases possessing a non-canonical Cys-His-Ser catalytic triad, Bioinformatics, vol.32, pp.1441-1446, 2016.

Y. Sato, The vasohibin family: a novel family for angiogenesis regulation, J Biochem, vol.153, pp.5-11, 2013.

Y. Suzuki, M. Kobayashi, and H. Miyashita, Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion, J Cell Sci, vol.123, pp.3094-101, 2010.

J. Nieuwenhuis, A. Adamopoulos, and O. B. Bleijerveld, Vasohibins encode tubulin detyrosinating activity, Science, vol.358, pp.1453-1459, 2017.

W. Hugo, H. Shi, and L. Sun, Non-genomic and immune evolution of melanoma acquiring MAPKi resistance, Cell, vol.162, pp.1271-85, 2015.

C. Bertolotto, F. Lesueur, and S. Giuliano, A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma, Nature, vol.480, pp.94-102, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01791271

C. Bonet, F. Luciani, and J. F. Ottavi, Deciphering the role of oncogenic MITFE318K in senescence delay and melanoma progression, J Natl Cancer Inst, vol.109, issue.8, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02529960

C. Bertolotto and F. Lesueur, Bressac de Paillerets B. MIFT, une clé génétique du mélanome et du carcinome rénal, Med Sci, vol.28, pp.258-61, 2012.

Y. Cheli, S. Giuliano, and T. Botton, Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, vol.30, pp.2307-2325, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530763

Y. Cheli, S. Giuliano, and N. Fenouille, Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, vol.31, pp.2461-70, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02530643

M. Ohanna, S. Giuliano, and C. Bonet, Senescent cells develop a PARP-1 and nuclear factor-{kappa} B-associated secretome (PNAS), Genes Dev, vol.25, pp.1245-61, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02530715

B. I. Ratnikov, D. A. Scott, and A. L. Osterman, Metabolic rewiring in melanoma, Oncogene, vol.36, pp.147-57, 2017.

P. Falletta, L. Sanchez-del-campo, and J. Chauhan, Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma, Genes Dev, vol.31, pp.18-33, 2017.

C. Canto, K. J. Menzies, and J. Auwerx, NAD (+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus, Cell metabolism, vol.22, pp.31-53, 2015.

V. Audrito, A. Manago, L. Vecchia, and S. , Nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic target in BRAF-mutated metastatic melanoma, J Natl Cancer Inst, vol.110, 2018.

M. Ohanna, M. Cerezo, and N. Nottet, Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype, Genes Dev, vol.32, pp.448-61, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02528273

V. Audrito, A. Manago, and F. Zamporlini, Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a novel marker for patients with BRAF-mutated metastatic melanoma, Oncotarget, vol.9, pp.18997-9005, 2018.