J. D. Wolchok and Y. M. Saenger, Current topics in melanoma, Curr Opin Oncol, vol.19, pp.116-136, 2007.

P. Sharma, S. Hu-lieskovan, J. A. Wargo, and R. A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy, Cell, vol.168, pp.707-730, 2017.

G. V. Long, D. Stroyakovskiy, and H. Gogas, Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma, N Engl J Med, vol.371, pp.1877-88, 2014.

G. V. Long, D. Stroyakovskiy, and H. Gogas, Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial, Lancet, vol.386, pp.444-51, 2015.

C. Robert, B. Karaszewska, and J. Schachter, Improved overall survival in melanoma with combined dabrafenib and trametinib, N Engl J Med, vol.372, pp.30-39, 2015.

G. V. Long, A. Hauschild, and M. Santinami, Adjuvant dabrafenib plus trametinib in stage III BRAF-mutated melanoma, N Engl J Med, vol.377, pp.1813-1836, 2017.

W. Hugo, H. Shi, and L. Sun, Non-genomic and Immune Evolution of Melanoma Acquiring MAPKi Resistance, Cell, vol.162, pp.1271-85, 2015.

P. A. Jones, Functions of DNA methylation: Islands, start sites, gene bodies and beyond, Nat Rev Genet, vol.13, pp.484-92, 2012.

J. J. Lee, G. F. Murphy, and C. G. Lian, Melanoma epigenetics: novel mechanisms, markers, and medicines, Lab Invest, vol.94, pp.822-860, 2014.

A. D. Goldberg, C. D. Allis, and E. Bernstein, Epigenetics: A Landscape Takes Shape, Cell, vol.128, pp.635-643, 2007.

E. Bernstein and S. B. Hake, The nucleosome : a little variation goes a long way, Biochem Cell Biol, vol.84, pp.505-512, 2006.

C. Vardabasso, D. Hasson, K. Ratnakumar, C. Y. Chung, L. F. Duarte et al., Histone variants: Emerging players in cancer biology, Cell Mol Life Sci, vol.71, pp.379-404, 2014.

M. Lawrence, S. Daujat, and R. Schneider, Lateral Thinking: How Histone Modifications Regulate Gene Expression, Trends Genet, vol.32, pp.42-56, 2016.

C. D. Allis and T. Jenuwein, The molecular hallmarks of epigenetic control, Nat Rev Genet, vol.17, pp.487-500, 2016.

G. E. Zentner and S. Henikoff, Regulation of nucleosome dynamics by histone modifications, Nat Struct Mol Biol, pp.259-66, 2013.

N. D. Heintzman, R. K. Stuart, and G. Hon, Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome, Nat Genet, vol.39, pp.311-319, 2007.

D. Hniszbrian, D. Hnisz, and B. J. Abraham, Super-Enhancers in the Control of, Cell Identity and Disease. Cell, vol.155, pp.934-981, 2013.

C. Lu and C. D. Allis, SWI/SNF complex in cancer, Nat Genet, pp.178-187, 2017.

R. Marmorstein and M. M. Zhou, Writers and readers of histone acetylation: Structure, mechanism, and inhibition, Cold Spring Harb Perspect Biol, vol.6, p.18762, 2014.

B. E. Bernstein, T. S. Mikkelsen, and X. Xie, Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell, vol.125, pp.315-341, 2006.

T. S. Mikkelsen, M. Ku, and D. B. Jaffe, Genome-wide maps of chromatin state in pluripotent and lineage-committed cells, Nature, vol.448, pp.553-60, 2007.

E. E. Patton, H. R. Widlund, and J. L. Kutok, BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma, Curr Biol, vol.15, pp.249-54, 2005.

C. K. Kaufman, C. Mosimann, and Z. P. Fan, A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science (80-), vol.351, p.2197, 2016.

D. Bossi, A. Cicalese, and G. I. Dellino, In Vivo genetic screens of patient-derived tumors revealed unexpected frailty of the transformed phenotype, Cancer Discov, vol.6, pp.650-63, 2016.

C. Guo, L. H. Chen, and Y. Huang, KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation, Oncotarget, vol.4, pp.2144-53, 2013.

D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher, SETDB1: A novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins, Genes Dev, vol.16, pp.919-951, 2002.

S. A. Sarraf and I. Stancheva, Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly, Mol Cell, vol.15, pp.595-605, 2004.

C. J. Ceol, Y. Houvras, J. -. Valbuena, and J. , The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset, Nature, vol.471, pp.513-520, 2011.

E. Orouji, A. Federico, and L. Larribère, Histone methyltransferase SETDB1 contributes to melanoma tumorigenesis and serves as a new potential therapeutic target, Int J Cancer, vol.145, pp.3462-77, 2019.

D. Zingg, J. Debbache, and S. M. Schaefer, The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors, Nat Commun, vol.6, p.6051, 2015.

D. Zingg, J. Debbache, and R. Peña-hernández, EZH2-Mediated Primary Cilium Deconstruction Drives Metastatic Melanoma Formation, Cancer Cell, vol.34, pp.69-84, 2018.

A. M. Barsotti, M. Ryskin, and W. Zhong, Epigenetic reprogramming by tumor-derived EZH2 gain-of-function mutations promotes aggressive 3D cell morphologies and enhances melanoma tumor growth, Oncotarget, vol.6, pp.2928-2966, 2015.

G. P. Souroullas, W. R. Jeck, and J. S. Parker, An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation, Nat Med, vol.22, pp.632-672, 2016.

G. M. De-donatis, L. Pape, E. Pierron, and A. , NF-kB2 induces senescence bypass in melanoma via a direct transcriptional activation of EZH2, Oncogene, vol.35, pp.2735-2780, 2016.

K. H. Kim and C. Roberts, Targeting EZH2 in cancer Kimberly, Nat Med, vol.22, pp.128-162, 2016.

Y. Qu, Q. Yang, and J. Liu, C-Myc is required for BRAFV600E-induced epigenetic silencing by H3K27me3 in tumorigenesis, Theranostics, vol.7, pp.2092-107, 2017.

G. Leroy, B. Rickards, and S. J. Flint, The Double Bromodomain Proteins Brd2 and Brd3 Couple Histone Acetylation to Transcription, Mol Cell, vol.30, pp.51-60, 2008.

S. J. Gallagher, B. Mijatov, and D. Gunatilake, Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151, Pigment Cell Melanoma Res, vol.27, pp.1126-1163, 2014.

S. J. Gallagher, B. Mijatov, and D. Gunatilake, The epigenetic regulator I-BET151 induces BIM-dependent apoptosis and cell cycle arrest of human melanoma cells, J Invest Dermatol, vol.134, pp.2795-2805, 2014.

M. F. Segura, B. Fontanals-cirera, and A. Gaziel-sovran, BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy, Cancer Res, vol.73, pp.6264-6276, 2013.

B. Fontanals-cirera, D. Hasson, and C. Vardabasso, Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene, Mol Cell, vol.68, pp.731-775, 2017.

I. M. Echevarría-vargas, P. I. Reyes-uribe, and A. N. Guterres, Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitorresistant melanoma, EMBO Mol Med, vol.10, p.8446, 2018.

E. Seto and M. Yoshida, Erasers of histone acetylation: The histone deacetylase enzymes, Cold Spring Harb Perspect Biol, vol.6, p.18713, 2014.

P. Fiziev, K. C. Akdemir, and J. P. Miller, Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression, Cell Rep, vol.19, pp.875-89, 2017.

N. E. Sharpless and L. Chin, The INK4?/ARF locus and melanoma, Oncogene, vol.22, pp.3092-3100, 2003.

M. Venza, M. Visalli, and C. Biondo, Epigenetic regulation of p14ARF and p16INK4A expression in cutaneous and uveal melanoma, Biochim Biophys Acta -Gene Regul Mech, vol.1849, pp.247-56, 2015.

A. Valentini, P. Gravina, G. Federici, and S. Bernardini, Valproic acid induces apoptosis, p16INK4Aupregulation and sensitization to chemotherapy in human melanoma cells, Cancer Biol Ther, vol.6, pp.185-91, 2007.

E. Ceccacci and S. Minucci, Inhibition of histone deacetylases in cancer therapy: Lessons from leukaemia, Br J Cancer, vol.114, pp.605-616, 2016.

T. Eckschlager, J. Plch, M. Stiborova, and J. Hrabeta, Histone deacetylase inhibitors as anticancer drugs, Int J Mol Sci, vol.18, p.1414, 2017.

D. M. Woods, K. Woan, and F. Cheng, The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity, Melanoma Res, vol.23, pp.341-349, 2013.

S. J. Gallagher, D. Gunatilake, and K. A. Beaumont, HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma, Int J Cancer, vol.142, pp.1926-1963, 2018.

L. A. Petruccelli, D. Dupéré-richer, F. Pettersson, H. Retrouvey, S. Skoulikas et al., Vorinostat induces reactive oxygen species and dna damage in acute myeloid leukemia cells, PLoS One, vol.6, p.20987, 2011.

L. Wang, L. De-oliveira, R. Huijberts, and S. , An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential, Cell, vol.173, pp.1413-1438, 2018.

A. P. Kozikowski, S. Tapadar, D. N. Luchini, H. K. Ki, and D. D. Billadeau, Use of the Nitrile Oxide Cycloaddition (NOC) reaction for molecular probe generation: A new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6, J Med Chem, vol.51, pp.4370-4373, 2008.

J. A. Bergman, K. Woan, P. Perez-villarroel, A. Villagra, E. M. Sotomayor et al., Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth, J Med Chem, vol.55, pp.9891-9900, 2012.

K. V. Woan, M. Lienlaf, and P. Perez-villaroel, Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: Enhanced antitumor immunity and impaired cell proliferation, Mol Oncol, vol.9, pp.1447-57, 2015.

M. Lienlaf, P. Perez-villarroel, and T. Knox, Essential role of HDAC6 in the regulation of PD-L1 in melanoma, Mol Oncol, vol.10, pp.735-50, 2016.

K. W. Vance, S. Carreira, G. Brosch, and C. M. Goding, Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas, Cancer Res, vol.65, pp.2260-2268, 2005.

J. S. Wilmott, A. J. Colebatch, and H. Kakavand, Expression of the class 1 histone deacetylases HDAC8 and 3 are associated with improved survival of patients with metastatic melanoma, Mod Pathol, vol.28, pp.884-94, 2015.

M. F. Emmons, F. Faião-flores, and R. Sharma, HDAC8 regulates a stress response pathway in melanoma to mediate escape from BRAF inhibitor therapy, Cancer Res, vol.79, pp.2947-61, 2019.

K. V. Woan, E. Sahakian, E. M. Sotomayor, E. Seto, and A. Villagra, Modulation of antigen-presenting cells by HDAC inhibitors: Implications in autoimmunity and cancer, Immunol Cell Biol, vol.90, pp.55-65, 2012.

A. Villagra, E. M. Sotomayor, and E. Seto, Histone deacetylases and the immunological network: Implications in cancer and inflammation, Oncogene, vol.29, pp.157-73, 2010.

J. J. Mcclure, X. Li, and C. J. Chou, Advances and Challenges of HDAC Inhibitors in Cancer Therapeutics, Adv Cancer Res, vol.138, pp.183-211, 2018.

A. Hauschild, U. Trefzer, and C. Garbe, Multicenter phase II trial of the histone deacetylase inhibitor pyridylmethyl-N-oyl]-benzyl}-carbamate in pretreated metastatic melanoma, Melanoma Res, vol.18, pp.274-282, 2008.

O. Maertens, R. Kuzmickas, and H. E. Manchester, MAPK pathway suppression unmasks latent dna repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1 -mutant melanomas, Cancer Discov, vol.9, pp.526-571, 2019.

A. Roesch, M. Fukunaga-kalabis, and E. C. Schmidt, A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth, Cell, vol.141, pp.583-94, 2010.

A. Roesch, A. Vultur, and I. Bogeski, Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells, Cancer Cell, vol.23, pp.811-836, 2013.

Y. Yu, K. Schleich, and B. Yue, Targeting the Senescence-Overriding Cooperative Activity of Structurally Unrelated H3K9 Demethylases in Melanoma, Cancer Cell, vol.33, pp.322-358, 2018.

J. H. Kalin, M. Wu, and A. V. Gomez, Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors, Nat Commun, vol.9, p.53, 2018.

M. Pan, M. A. Reid, and X. H. Lowman, Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation, Nat Cell Biol, vol.18, pp.1090-101, 2016.

W. Y. Park, B. J. Hong, J. Lee, C. Choi, and M. Y. Kim, H3K27 demethylase JMJD3 employs the NF-?B and BMP signaling pathways to modulate the tumor microenvironment and promote melanoma progression and metastasis, Cancer Res, vol.76, pp.161-70, 2016.

E. Hodis, I. R. Watson, and G. V. Kryukov, A landscape of driver mutations in melanoma, Cell, vol.150, pp.251-63, 2012.

A. Mehrotra, G. Mehta, S. Aras, A. Trivedi, and I. L. De-la-serna, SWI/SNF chromatin remodeling enzymes in melanocyte differentiation and melanoma, Crit Rev Eukaryot Gene Expr, vol.24, pp.151-61, 2014.

B. Keenen, H. Qi, S. V. Saladi, M. Yeung, D. L. Serna et al., Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma, Oncogene, vol.29, pp.81-92, 2010.

P. Laurette, T. Strub, and D. Koludrovic, Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells, Elife, vol.4, p.6857, 2015.

P. Laurette, S. Coassolo, and G. Davidson, Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma, Cell Death Differ, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359493

D. Koludrovic, P. Laurette, and T. Strub, Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells, PLoS Genet, vol.11, p.1005555, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-02163718

Y. Cheli, S. Guiliano, and T. Botton, Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny, Oncogene, vol.30, pp.2307-2325, 2011.

M. Ohanna, S. Giuliano, and C. Bonet, Senescent cells develop a parp-1 and nuclear factor-?B-associated secretome (PNAS), Genes Dev, vol.25, pp.1245-61, 2011.

Y. Cheli, V. F. Bonnazi, and A. Jacquel, CD271 is an imperfect marker for melanoma initiating cells, Oncotarget, vol.5, pp.5272-83, 2014.

Y. Cheli, S. Giuliano, and N. Fenouille, Hypoxia and MITF control metastatic behaviour in mouse and human melanoma cells, Oncogene, vol.31, pp.2461-70, 2012.

M. Ohanna, M. Cerezo, and N. Nottet, Pivotal role of NAMPT in the switch of melanoma cells toward an invasive and drug-resistant phenotype, Genes Dev, vol.32, pp.448-61, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02528273

Z. A. Qadeer, S. Harcharik, and D. Valle-garcia, Decreased expression of the chromatin remodeler ATRX associates with melanoma progression, J Invest Dermatol, vol.134, pp.1768-72, 2014.

S. Schiaffino-ortega, C. Balinas, M. Cuadros, and P. P. Medina, SWI/SNF proteins as targets in cancer therapy, J Hematol Oncol, vol.7, p.81, 2014.

A. Kapoor, M. S. Goldberg, and L. K. Cumberland, The histone variant macroH2A suppresses melanoma progression through regulation of CDK8, Nature, vol.468, pp.1105-1114, 2010.

L. F. Duarte, A. Young, and Z. Wang, Histone H3.3 and its proteolytically processed form drive a cellular senescence programme, Nat Commun, vol.5, p.5210, 2014.

C. Vardabasso, A. Gaspar-maia, and D. Hasson, Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma, Mol Cell, vol.59, pp.75-88, 2015.

M. H. Nissan and D. B. Solit, The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?, Curr Oncol Rep, vol.13, pp.479-87, 2011.

K. T. Flaherty, C. Robert, and P. Hersey, Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma, N Engl J Med, vol.367, pp.107-121, 2012.

G. Bollag, P. Hirth, and J. Tsai, Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma, Nature, vol.467, pp.596-605, 2010.

H. Davies, G. R. Bignell, and C. Cox, Mutations of the BRAF gene in human cancer, Nature, vol.417, pp.949-54, 2002.

K. T. Flaherty, J. R. Infante, and A. Daud, Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations, N Engl J Med, vol.367, pp.1694-703, 2012.

P. B. Chapman, A. Hauschild, and C. Robert, Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation, N Engl J Med, vol.364, pp.2507-2523, 2011.

G. Long, J. S. Weber, and J. R. Infante, Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib, J Clin Oncol, vol.34, pp.871-879, 2016.

J. J. Luke, K. T. Flaherty, A. Ribas, and G. V. Long, Targeted agents and immunotherapies: Optimizing outcomes in melanoma, Nat Rev Clin Oncol, vol.14, pp.463-82, 2017.

H. Shi, G. Moriceau, and X. Kong, Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance, Nat Commun, vol.3, p.724, 2012.

P. I. Poulikakos, Y. Persaud, and M. Janakiraman, RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E), Nature, vol.480, pp.387-90, 2011.

C. M. Johannessen, J. S. Boehm, and S. Y. Kim, COT drives resistance to RAF inhibition through MAP kinase pathway reactivation, Nature, vol.468, pp.968-72, 2010.

J. Villanueva, A. Vultur, and J. T. Lee, Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K, Cancer Cell, vol.18, pp.683-95, 2010.

R. Nazarian, H. Shi, and Q. Wang, Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation, Nature, vol.468, pp.973-980, 2010.

L. Koetz-ploch, D. Hanniford, and I. Dolgalev, MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway, Pigment Cell Melanoma Res, vol.30, pp.328-366, 2017.

C. Song, M. Piva, and L. Sun, Recurrent tumor cell-intrinsic andextrinsic alterations during mapki-induced melanoma regression and early adaptation, Cancer Discov, vol.7, pp.1248-65, 2017.

C. Shen, S. H. Kim, and S. Trousil, Loss of cohesin complex components STAG2 or STAG3 confers resistance to BRAF inhibition in melanoma, Nat Med, vol.22, pp.1056-61, 2016.

R. Somasundaram, G. Zhang, and M. Fukunaga-kalabis, Tumor-associated B-cells induce tumor heterogeneity and therapy resistance, Nat Commun, vol.8, p.607, 2017.

A. C. Seghers, S. Wilgenhof, C. Lebbé, and B. Neyns, Successful rechallenge in two patients with BRAF-V600-mutant melanoma who experienced previous progression during treatment with a selective BRAF inhibitor, Melanoma Res, vol.22, pp.466-72, 2012.

S. Valpione, M. S. Carlino, and J. Mangana, Rechallenge with BRAF-directed treatment in metastatic melanoma: A multi-institutional retrospective study, Eur J Cancer, vol.91, pp.116-140, 2018.

D. Thakur, M. Salangsang, F. Landman, and A. S. , Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance, Nature, vol.494, pp.251-256, 2013.

E. Hirata, M. R. Girotti, and A. Viros, Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin ?1/FAK Signaling, Cancer Cell, vol.27, pp.574-88, 2015.

A. C. Obenauf, Y. Zou, and A. L. Ji, Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, vol.520, pp.368-72, 2015.

S. Sharma, D. Y. Lee, and B. Li, A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations, Cell, vol.141, pp.69-80, 2010.

D. R. Menon, S. Das, and C. Krepler, A stress-induced early innate response causes multidrug tolerance in melanoma, Oncogene, vol.34, pp.4545-4545, 2015.

X. Liu, S. M. Zhang, and M. K. Mcgeary, KDM5B promotes drug resistance by regulating melanoma-propagating cell subpopulations, Mol Cancer Ther, vol.18, pp.706-723, 2019.

S. M. Shaffer, M. C. Dunagin, and S. R. Torborg, Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance, Nature, vol.546, pp.431-436, 2017.

O. Shalem, N. E. Sanjana, and E. Hartenian, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, vol.343, pp.84-91, 2014.

R. Rajendran, R. Garva, M. Krstic-demonacos, and C. Demonacos, Sirtuins: Molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription, J Biomed Biotechnol, p.368276, 2011.

M. Ohanna, C. Bonet, and K. Bille, SIRT1 promotes proliferation and inhibits the senescence-like phenotype in human melanoma cells, Oncotarget, vol.5, pp.2085-95, 2014.

P. K. Bajpe, A. Prahallad, H. Horlings, I. Nagtegaal, R. Beijersbergen et al., A chromatin modifier genetic screen identifies SIRT2 as a modulator of response to targeted therapies through the regulation of MEK kinase activity, Oncogene, vol.34, pp.531-537, 2014.

V. Desantis, A. Lamanuzzi, and A. Vacca, The role of SIRT6 in tumors, Haematologica, vol.103, 2018.

T. Strub, F. G. Ghiraldini, and S. Carcamo, SIRT6 haploinsufficiency induces BRAFV600E melanoma cell resistance to MAPK inhibitors via IGF signalling, Nat Commun, vol.9, p.3440, 2018.

N. R. Sundaresan, P. Vasudevan, and L. Zhong, The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun, Nat Med, vol.18, pp.1643-50, 2012.

C. C. Jiang, F. Lai, and R. F. Thorne, MEK-independent survival of B-RAFV600Emelanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720, Clin Cancer Res, vol.17, pp.721-751, 2011.

Y. Shao and A. E. Aplin, Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells, Cancer Res, vol.70, pp.6670-81, 2010.

A. Cagnetta, D. Soncini, and S. Orecchioni, Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents, Haematologica, vol.103, pp.80-90, 2018.

J. Villanueva and M. Herlyn, Melanoma and the tumor microenvironment, Curr Oncol Rep, vol.10, pp.439-485, 2008.

S. J. Patel, N. E. Sanjana, and R. J. Kishton, Identification of essential genes for cancer immunotherapy, Nature, vol.548, pp.537-579, 2017.

Y. K. Chae, A. Arya, and W. Iams, Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer

, lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC), J Immunother Cancer, vol.6, p.39, 2018.

M. Ayers, J. Lunceford, and M. Nebozhyn, IFN-?-related mRNA profile predicts clinical response to PD-1 blockade, J Clin Invest, vol.127, pp.2930-2970, 2017.

I. Puzanov, A. Diab, and K. Abdallah, Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group, J Immunother Cancer, vol.5, p.95, 2017.

M. G. Netea, L. Joosten, and E. Latz, Trained immunity: A program of innate immune memory in health and disease. Science (80-), vol.352, p.1098, 2016.

R. Arts, A. Carvalho, L. Rocca, and C. , Immunometabolic Pathways in BCG-Induced Trained Immunity, Cell Rep, vol.17, pp.2562-71, 2016.

S. Saeed, J. Quintin, and H. Kerstens, Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science (80-), vol.345, p.1251086, 2014.

J. Dunn and S. Rao, Epigenetics and immunotherapy: The current state of play, Mol Immunol, vol.87, pp.227-266, 2017.

N. Arenas-ramirez, D. Sahin, and O. Boyman, Epigenetic mechanisms of tumor resistance to immunotherapy, Cell Mol Life Sci, vol.75, pp.4163-76, 2018.

D. Zingg, N. Arenas-ramirez, and D. Sahin, The Histone Methyltransferase Ezh2 Controls Mechanisms of Adaptive Resistance to Tumor Immunotherapy, Cell Rep, vol.20, pp.854-67, 2017.

D. Pan, A. Kobayashi, and P. Jiang, A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science (80-), vol.359, pp.770-775, 2018.

W. Sheng, M. W. Lafleur, and T. H. Nguyen, Ablation Stimulates Anti-tumor Immunity and Enables Checkpoint Blockade. Cell, vol.174, pp.549-63, 2018.

D. D. Vo, R. M. Prins, and J. L. Begley, Enhanced antitumor activity induced by adoptive T-cell transfer and adjunctive use of the histone deacetylase inhibitor LAQ824, Cancer Res, vol.69, pp.8693-8702, 2009.

A. Covre, S. Coral, and H. Nicolay, Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models, Oncoimmunology, vol.4, p.1019978, 2015.

A. S. Laino, B. C. Betts, and A. Veerapathran, HDAC6 selective inhibition of melanoma patient T-cells augments anti-tumor characteristics, J Immunother Cancer, vol.7, p.33, 2019.

P. Rietschel, K. S. Panageas, C. Hanlon, A. Patel, D. H. Abramson et al., Variates of survival in metastatic uveal melanoma, J Clin Oncol, vol.23, pp.8076-80, 2005.

C. Pandiani, G. E. Béranger, J. Leclerc, R. Ballotti, and C. Bertolotto, Focus on cutaneous and uveal melanoma specificities, Genes Dev, vol.31, pp.724-767, 2017.

P. Johansson, L. G. Aoude, and K. Wadt, Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4, Oncotarget, vol.7, pp.4624-4655, 2016.

A. R. Moore, E. Ceraudo, and J. J. Sher, Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma, Nat Genet, vol.48, pp.675-80, 2016.

C. D. Van-raamsdonk, V. Bezrookove, and G. Green, Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi, Nature, vol.457, pp.599-602, 2009.

C. D. Van-raamsdonk, K. G. Griewank, and M. B. Crosby, Mutations in GNA11 in Uveal Melanoma, N Engl J Med, vol.363, pp.2191-2200, 2010.

M. G. Field, M. A. Durante, and H. Anbunathan, Punctuated evolution of canonical genomic aberrations in uveal melanoma, Nat Commun, vol.9, p.116, 2018.

R. D. Carvajal, G. K. Schwartz, T. Tezel, B. Marr, J. H. Francis et al., Metastatic disease from uveal melanoma: Treatment options and future prospects, Br J Ophthalmol, vol.101, pp.38-44, 2017.

J. C. Scheuermann, A. G. De-ayala-alonso, and K. Oktaba, Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB, Nature, vol.465, pp.243-250, 2010.

S. Landreville, O. A. Agapova, and K. A. Matatall, Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma, Clin Cancer Res, vol.18, pp.408-424, 2012.

H. Wang, L. Wang, and H. Erdjument-bromage, Role of histone H2A ubiquitination in Polycomb silencing, Nature, vol.431, pp.873-881, 2004.

P. Zhu, W. Zhou, and J. Wang, A Histone H2A Deubiquitinase Complex Coordinating Histone Acetylation and H1 Dissociation in Transcriptional Regulation, Mol Cell, vol.27, pp.609-630, 2007.

T. Nakagawa, T. Kajitani, and S. Togo, Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di-and trimethylation, Genes Dev, vol.22, pp.37-49, 2008.

K. A. Matatall, O. A. Agapova, M. D. Onken, L. A. Worley, A. M. Bowcock et al., BAP1 deficiency causes loss of melanocytic cell identity in uveal melanoma, BMC Cancer, vol.13, p.371, 2013.

M. G. Field, J. N. Kuznetsov, and P. L. Bussies, BAP1 Loss Is Associated with DNA Methylomic Repatterning in Highly Aggressive Class 2 Uveal Melanomas, Clin Cancer Res, vol.25, pp.5663-73, 2019.

P. V. Bommi, M. Dimri, A. A. Sahasrabuddhe, J. D. Khandekar, and G. P. Dimri, The polycomb group protein BMI1 is a transcriptional target of HDAC inhibitors, Cell Cycle, vol.9, pp.2663-73, 2010.

B. S. Mann, J. R. Johnson, M. H. Cohen, R. Justice, and R. Pazdur, FDA Approval Summary: Vorinostat for Treatment of Advanced Primary Cutaneous T-Cell Lymphoma, Oncologist, vol.12, pp.1247-52, 2007.

F. M. Robertson, W. A. Woodward, and R. Pickei, Suberoylanilide hydroxamic acid blocks self-renewal and homotypic aggregation of inflammatory breast cancer spheroids, Cancer, vol.116, pp.2760-2767, 2010.

Y. Wang, M. Liu, Y. Jin, S. Jiang, and J. Pan, In vitro and in vivo anti-uveal melanoma activity of JSL-1, a novel HDAC inhibitor, Cancer Lett, vol.400, pp.47-60, 2017.

R. Heijkants, K. Willekens, and M. Schoonderwoerd, Combined inhibition of CDK and HDAC as a promising therapeutic strategy for both cutaneous and uveal metastatic melanoma, Oncotarget, vol.9, pp.6174-87, 2018.

W. Dai, J. Zhou, J. B. Pan, and J. , Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma, Sci Rep, vol.6, p.22622, 2016.

R. D. Carvajal, J. A. Sosman, and J. F. Quevedo, Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: A randomized clinical trial, JAMA -J Am Med Assoc, vol.311, pp.2397-405, 2014.

R. D. Carvajal, S. Piperno-neumann, and E. Kapiteijn, Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: A Phase III, Multicenter, Randomized Trial (SUMIT), J Clin Oncol, vol.36, pp.1232-1241, 2018.

F. Faião-flores, M. F. Emmons, and M. A. Durante, HDAC Inhibition Enhances the In Vivo Efficacy of MEK Inhibitor Therapy in Uveal Melanoma, Clin Cancer Res, vol.25, pp.5686-701, 2019.

A. R. Safa, c-FLIP, a master anti-apoptotic regulator, Exp Oncol, vol.34, pp.176-84, 2012.

I. Venza, M. Visalli, R. Oteri, D. Teti, and M. Venza, Class I-specific histone deacetylase inhibitor MS-275 overrides TRAIL-resistance in melanoma cells by downregulating c-FLIP, Int Immunopharmacol, vol.21, pp.439-485, 2014.

L. M. Lafave, W. Béguelin, and R. Koche, Loss of BAP1 function leads to EZH2-dependent transformation, Nat Med, vol.21, pp.1344-1353, 2015.

K. Nishioka, J. C. Rice, and K. Sarma, PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent Chromatin, Mol Cell, vol.9, pp.1201-1214, 2002.

M. Schoumacher, L. Corre, S. Houy, and A. , Uveal melanoma cells are resistant to EZH2 inhibition regardless of BAP1 status, Nat Med, vol.22, pp.577-585, 2016.

D. S. Schrump, Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: Mechanisms and potential clinical implications, Clin Cancer Res, vol.15, pp.3947-57, 2009.