E. D. Anderson, L. Thomas, J. S. Hayflick, and G. Thomas, Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed ?1-antitrypsin variant, J. Biol. Chem, vol.268, pp.24887-24891, 1993.

D. E. Bassi, J. Zhang, C. Renner, and A. J. Klein-szanto, Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth, Mol. Carcinog, vol.56, pp.1182-1188, 2017.

B. J. Bosch, W. Bartelink, and P. J. Rottier, Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide, J. Virol, vol.82, pp.8887-8890, 2008.

E. Braun and D. Sauter, Furin-mediated protein processing in infectious diseases and cancer, Clin. Transl. Immunol, vol.8, 2019.

C. M. Chan, P. C. Woo, S. K. Lau, H. Tse, H. L. Chen et al., Spike protein, S, of human coronavirus HKU1: role in viral life cycle and application in antibody detection, Exp. Biol. Med, vol.233, pp.1527-1536, 2008.

J. F. Chan, K. H. Kok, Z. Zhu, H. Chu, K. K. To et al., Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan, Emerg. Microb. Infect, vol.9, pp.221-236, 2020.

J. Cheng, Y. Zhao, G. Xu, K. Zhang, W. Jia et al., The S2 subunit of QX-type infectious bronchitis coronavirus spike protein is an essential determinant of neurotropism, Viruses, vol.11, 2019.

E. C. Claas, A. D. Osterhaus, R. Van-beek, J. C. De-jong, G. F. Rimmelzwaan et al., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, Lancet, vol.351, pp.472-477, 1998.

S. O. Dahms, G. Jiao, and M. E. Than, Structural studies revealed active site distortions of human furin by a small molecule inhibitor, ACS Chem. Biol, vol.12, 2017.

E. De-wit, N. Van-doremalen, D. Falzarano, and V. J. Munster, SARS and MERS: recent insights into emerging coronaviruses, Nat. Publ. Gr, 2016.

E. Decroly, S. Wouters, C. Di-bello, C. Lazure, J. Ruysschaert et al., Identification of the Paired Basic Convertases Implicated in HIV gp160 Processing Based on in Vitro Assays and Expression in CD4 + Cell Lines, J. Biol. Chem, vol.271, pp.30442-30450, 1996.

W. Garten, S. Hallenberger, D. Ortmann, W. Schäfer, M. Vey et al., Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones, Biochimie, vol.76, pp.217-225, 1994.

X. Ge, J. Li, X. Yang, A. A. Chmura, G. Zhu et al., Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor, Nature, vol.503, pp.535-538, 2013.

G. Izaguirre, The proteolytic regulation of virus cell entry by furin and other proprotein convertases, Viruses, vol.11, 2019.

H. Kido, Y. Okumura, E. Takahashi, H. Y. Pan, S. Wang et al., Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure, Biochim. Biophys. Acta Protein Proteonomics, 2012.

W. Kim, E. Zekas, R. Lodge, D. Susan-resiga, E. Marcinkiewicz et al., Neuroinflammation-Induced interactions between protease-activated receptor 1 and proprotein convertases in HIV-associated neurocognitive disorder, Mol. Cell Biol, vol.35, pp.764-779, 2015.

J. H. Kuhn, W. Li, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2: a functional receptor for SARS coronavirus, Cell. Mol. Life Sci, vol.61, pp.2738-2743, 2004.

L. Coupanec, A. Desforges, M. Meessen-pinard, M. Dubé, M. Day et al., Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system, PLoS Pathog, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01351401

F. Li, W. Li, M. Farzan, and S. C. Harrison, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science, vol.309, pp.1864-1868, 2005.

Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med, 2020.

W. Li, M. J. Moore, N. Vasllieva, J. Sui, S. K. Wong et al., Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature, vol.426, pp.450-454, 2003.

G. Lu, Q. Wang, and G. F. Gao, Bat-to-human: spike features determining "host jump" of coronaviruses SARS-CoV, MERS-CoV, and beyond, Trends Microbiol, 2015.

S. Matsuyama, N. Nagata, K. Shirato, M. Kawase, M. Takeda et al., Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2, J. Virol, vol.84, pp.12658-12664, 2010.

S. Matsuyama, M. Ujike, S. Morikawa, M. Tashiro, F. Taguchi et al., Antiviral Research, vol.176, p.104742, 2005.

, mediated enhancement of severe acute respiratory syndrome coronavirus infection, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.12543-12547

M. Mbikay, F. Sirois, J. Yao, N. G. Seidah, and M. Chrétien, Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours, Br. J. Canc, vol.75, pp.1509-1514, 1997.

J. K. Mille and G. R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.15214-15219, 2014.

J. K. Millet and G. R. Whittaker, Host cell proteases: critical determinants of coronavirus tropism and pathogenesis, Virus Res, vol.202, pp.120-134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02641627

J. K. Millet and G. R. Whittaker, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein, Proc. Natl. Acad. Sci. U.S.A, vol.111, pp.15214-15219, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639702

M. Moulard and E. Decroly, Maturation of HIV envelope glycoprotein precursors by cellular endoproteases, Biochim. Biophys. Acta Rev. Biomembr, pp.14-23, 2000.

I. Schechter and A. Berger, On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain, Biochem. Biophys. Res. Commun, vol.32, pp.898-902, 1968.

N. G. Seidah and M. Chretien, Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides, Brain Res, vol.848, pp.45-62, 1999.

N. G. Seidah and A. Prat, The biology and therapeutic targeting of the proprotein convertases, Nat. Rev. Drug Discov, 2012.

X. Sun, L. V. Tse, A. D. Ferguson, and G. R. Whittaker, Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus, J. Virol, vol.84, pp.8683-8690, 2010.

Y. Wan, J. Shang, R. Graham, R. S. Baric, and F. Li, Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS, J. Virol, 2020.

Y. Yuan, D. Cao, Y. Zhang, J. Ma, J. Qi et al., Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains, Nat. Commun, 2017.

S. Zhao, J. Ran, S. S. Musa, G. Yang, W. Wang et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak, Int J Infect Dis, pp.30053-30059, 2020.

B. Coutard, Antiviral Research, vol.176, p.104742, 2020.