D. Barbolosi, J. Ciccolini, B. Lacarelle, F. Barlesi, and N. André, Computational oncology-mathematical modelling of drug regimens for precision medicine, Nat Rev Clin Oncol, vol.13, issue.4, pp.242-254, 2016.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer: integrating quantitative models, Nat Rev Cancer, vol.15, issue.12, pp.730-745, 2015.

C. Meille, D. Barbolosi, J. Ciccolini, G. Freyer, and A. Iliadis, Revisiting Dosing Regimen Using Pharmacokinetic/Pharmacodynamic Mathematical Modeling: Densification and Intensification of Combination Cancer Therapy, Clin Pharmacokinet, vol.55, issue.8, p.26946136, 2016.

V. P. Collins, R. K. Loeffler, and H. Tivey, Observations on growth rates of human tumors, Am J Roentgenol Radium Ther Nucl Med, vol.76, issue.5, 1956.

G. G. Steel, Growth kinetics of tumours: cell population kinetics in relation to the growth and treatment of cancer, 1977.

A. K. Laird, Dynamics of tumor growth, Br J Cancer, vol.13, pp.490-502, 1964.

C. P. Winsor, The Gompertz curve as a growth curve, Proc Natl Acad Sci U S A, vol.18, issue.1, pp.1-8, 1932.

L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res, vol.48, issue.24, pp.7067-7071, 1988.

C. L. Frenzen and J. D. Murray, A Cell Kinetics Justification for Gompertz' Equation, SIAM J Appl Math, vol.46, issue.4, pp.614-629, 1986.

L. Norton, R. Simon, H. D. Brereton, and A. E. Bogden, Predicting the Course of Gompertzian Growth, Nature, vol.264, issue.5586, pp.542-545, 1976.

G. F. Brunton and T. E. Wheldon, Characteristic Species Dependent Growth Patterns of Mammalian Neoplasms, Cell Tissue Kinet, vol.11, issue.2, p.630579, 1978.

R. Demicheli, Growth of testicular neoplasm lung metastases: Tumor-specific relation between two Gompertzian parameters, Eur J Cancer, vol.16, issue.12, pp.90034-90035, 1980.

A. M. Parfitt and D. P. Fyhrie, Gompertzian growth curves in parathyroid tumours: further evidence for the setpoint hypothesis, Cell Prolif, vol.30, issue.8-9, pp.341-349, 1997.

G. G. Steel, Species-dependent growth patterns for mammalian neoplasms, Cell Tissue Kinet, vol.13, issue.4, pp.451-453, 1980.

S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLoS Comput Biol, vol.10, issue.8, p.1003800, 2014.

V. G. Vaidya and F. J. Alexandro, Evaluation of some mathematical models for tumor growth, Int J Biomed Comput, vol.13, issue.1, pp.19-36, 1982.

M. Lavielle, Mixed Effects Models for the Population Approach: Models, Tasks, CRC Biostatistics Series, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01122873

Z. P. Parra-guillen, V. Mangas-sanjuan, M. Garcia-cremades, I. F. Troconiz, G. Mo et al., Systematic Modeling and Design Evaluation of Unperturbed Tumor Dynamics in Xenografts, J Pharmacol Exp Ther, vol.366, issue.1, pp.96-104, 2018.

E. Karaman, D. Narinc, M. Z. Firat, and T. Aksoy, Nonlinear Mixed Effects Modeling of Growth in Japanese Quail, Poult Sci J, vol.92, issue.7, pp.1942-1948, 2013.

Z. Wang and M. J. Zuidhof, Estimation of Growth Parameters Using a Nonlinear Mixed Gompertz Model, Poult Sci J, vol.83, issue.6, pp.847-852, 2004.

L. Claret, P. Girard, P. M. Hoff, E. Van-cutsem, K. P. Zuideveld et al., Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics, J Clin Oncol, vol.27, issue.25, pp.4103-4108, 2009.

B. Ribba, N. H. Holford, P. Magni, I. Trocóniz, I. Gueorguieva et al., A Review of Mixed-Effects Models of Tumor Growth and Effects of Anticancer Drug Treatment Used in Population Analysis, CPT Pharmacometrics Syst Pharmacol, vol.3, issue.5, pp.1-10, 2014.

N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat et al., Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice, Cancer Res, vol.74, issue.22, pp.6397-6407, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01107681

S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi et al., Modeling Spontaneous Metastasis Following Surgery: An In Vivo-In Silico Approach, Cancer Res, vol.76, issue.3, pp.535-547, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01222046

M. Simeoni, P. Magni, C. Cammia, D. Nicolao, G. Croci et al., Predictive pharmacokineticpharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents, Cancer Res, vol.64, issue.3, pp.1094-1101, 2004.

H. B. Frieboes, B. R. Smith, Y. L. Chuang, K. Ito, A. M. Roettgers et al., An Integrated Computational/Experimental Model of Lymphoma Growth, PLoS Comput Biol, vol.9, issue.3, p.1003008, 2013.

S. D. Finley and A. S. Popel, Effect of Tumor Microenvironment on Tumor VEGF During Anti-VEGF Treatment: Systems Biology Predictions, J Natl Cancer Inst, vol.105, issue.11, pp.802-811, 2013.

T. Stylianopoulos, J. D. Martin, M. Snuderl, F. Mpekris, S. R. Jain et al., Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse, Cancer Res, vol.73, issue.13, pp.3833-3841, 2013.

N. Kronik, Y. Kogan, M. Elishmereni, K. Halevi-tobias, S. Vuk-pavlovi? et al., Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models, PLoS ONE, vol.5, issue.12, p.15482, 2010.

Y. Kogan, K. Halevi-tobias, M. Elishmereni, S. Vuk-pavlovic, and Z. Agur, Reconsidering the Paradigm of Cancer Immunotherapy by Computationally Aided Real-Time Personalization, Cancer Res, vol.72, issue.9, pp.2218-2227, 2012.

L. Claret, P. Girard, P. M. Hoff, E. Van-cutsem, K. P. Zuideveld et al., Model-Based Prediction of Phase III Overall Survival in Colorectal Cancer on the Basis of Phase II Tumor Dynamics, J Clin Oncol, vol.27, issue.25, pp.4103-4108, 2009.

B. Ribba, G. Kaloshi, M. Peyre, R. D. Calvez, V. Tod et al., A Tumor Growth Inhibition Model for Low-Grade Glioma Treated with Chemotherapy or Radiotherapy, Clin Cancer Res, vol.18, issue.18, pp.5071-5080, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00744626

T. Colin, A. Iollo, D. Lombardi, and O. Saut, Prediction of the Evolution of Thyroidal Lung Nodules Using a Mathematical Model, ERCIM News, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01038030

E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M. A. Weber et al., Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations, IEEE Trans Med Imaging, vol.29, issue.1, pp.77-95, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00616100

A. L. Baldock, K. Yagle, D. E. Born, S. Ahn, A. D. Trister et al., Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status, Neuro-Oncology, vol.16, issue.6, pp.779-786, 2014.

A. Kramer, B. Calderhead, and N. Radde, Hamiltonian Monte Carlo Methods for Efficient Parameter Estimation in Steady State Dynamical Systems, BMC Bioinformatics, vol.15, issue.1, p.25066046, 2014.

A. Gelman, Bayesian Data Analysis, & Hall/CRC Texts in Statistical Science, 2014.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich et al., A Probabilistic Programming Language, J Stat Softw, vol.76, issue.1, 2017.

M. V. Patrone, J. L. Hubbs, J. E. Bailey, and L. B. Marks, How long have I had my cancer, doctor? Estimating tumor age via Collins' law, Oncology, vol.25, issue.1, pp.38-43, 2011.

F. Cardoso, L. J. Van't-veer, J. Bogaerts, L. Slaets, G. Viale et al., 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer, N Engl J Med, vol.375, issue.8, pp.717-729, 2016.

A. Rodallec, G. Sicard, S. Giacometti, M. Carré, B. Pourroy et al., From 3D Spheroids to Tumor Bearing Mice: Efficacy and Distribution Studies of Trastuzumab-Docetaxel Immunoliposome in Breast Cancer, Int J Nanomedicine, vol.13, pp.6677-6688, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143622

M. Mastri, A. Tracz, and J. Ebos, Tumor Growth Kinetics of Human LM2-4LUC+ Triple Negative Breast Carcinoma Cells, 2019.

J. Ebos, C. R. Lee, E. Bogdanovic, J. Alami, P. Van-slyke et al., Vascular Endothelial Growth Factor-Mediated Decrease in Plasma Soluble Vascular Endothelial Growth Factor Receptor-2 Levels as a Surrogate Biomarker for Tumor Growth, Cancer Res, vol.68, issue.2, pp.521-529, 2008.

A. Rodallec, S. Giacometti, J. Ciccolini, and R. Fanciullino, Tumor Growth Kinetics of Human MDA-MB-231 Cells Transfected with dTomato Lentivirus, 2019.

S. Benzekry, C. Lamont, J. Weremowicz, A. Beheshti, L. Hlatky et al., Tumor Growth Kinetics of Subcutaneously Implanted Lewis Lung Carcinoma Cells, 2019.

J. S. Bertram and P. Janik, Establishment of a Cloned Line of Lewis Lung Carcinoma Cells Adapted to Cell Culture, Cancer Lett, vol.11, issue.1, pp.63-73, 1980.

, Monolix Version, Lixoft SAS, 2018.

B. Deylon, M. Lavielle, and E. Moulines, Convergence of a Stochastic Approximation Version of the EM Algorithm, Ann Statist, vol.27, issue.1, pp.94-128, 1999.

G. Seber and C. J. Wild, Nonlinear Regression, Wiley Series in Probability and Statistics, 2003.

G. F. Brunton and T. E. Wheldon, Prediction of the Complete Growth Pattern of Human Multiple Myeloma from Restricted Initial Measurements, Cell Tissue Kinet, vol.10, issue.6, p.922806, 1977.

G. F. Brunton and T. E. Wheldon, The Gompertz Equation and the Construction of Tumour Growth Curves, Cell Tissue Kinet, vol.13, issue.4, pp.455-460, 1980.

A. D'onofrio and A. Gandolfi, A Family of Models of Angiogenesis and Anti-Angiogenesis Anti-Cancer Therapy, Math Med Biol, vol.26, issue.1, pp.63-95, 2008.

E. A. Sarapata and L. G. De-pillis, A comparison and catalog of intrinsic tumor growth models, Bulletin of Mathematical Biology, vol.76, issue.8, p.25081547, 2014.

D. Hart, E. Shochat, and Z. Agur, The growth law of primary breast cancer as inferred from mammography screening trials data, Br J Cancer, vol.78, issue.3, pp.382-389, 1998.

P. W. Sullivan and S. E. Salmon, Kinetics of tumor growth and regression in IgG multiple myeloma, J Clin Invest, vol.51, issue.7, pp.1697-1708, 1972.

J. A. Spratt, D. Fournier, J. S. Spratt, and E. E. Weber, Decelerating growth and human breast cancer. Cancer, vol.71, pp.2013-2019, 1993.

M. Marusi?, Z. Bajzer, S. Vuk-pavlovi?, and J. P. Freyer, Tumor growth in vivo and as multicellular spheroids compared by mathematical models, Bull Math Biol, vol.56, issue.4, pp.617-631, 1994.

, Fractal Growth of Tumors and Other Cellular Populations: Linking the Mechanistic to the Phenomenological Modeling and Vice Versa, Chaos Soliton Fract, vol.41, issue.2, pp.875-880, 2009.

M. Marusi?, Z. Bajzer, J. P. Freyer, and S. Vuk-pavlovi?, Analysis of growth of multicellular tumour spheroids by mathematical models, Cell Prolif, vol.27, issue.2, pp.73-94, 1994.

A. E. Casey, The Experimental Alteration of Malignancy with an Homologous Mammalian Tumor Material: I. Results with Intratesticular Inoculation, Am J Cancer, vol.21, pp.760-775, 1934.

S. Michelson, . Glicksman-as, and J. T. Leith, Growth in solid heterogeneous human colon adenocarcinomas: comparison of simple logistical models, Cell Prolif, vol.20, issue.3, pp.343-355, 1987.

E. K. Rofstad, O. Fodstad, and T. Lindmo, Growth characteristics of human melanoma xenografts, Cell Tissue Kinet, vol.15, issue.5, pp.545-554, 1982.

T. E. Wheldon, Mathematical models in cancer research, 1988.

M. Bilous, C. Serdjebi, A. Boyer, P. Tomasini, C. Pouypoudat et al., Quantitative Mathematical Modeling of Clinical Brain Metastasis Dynamics in Non, Small Cell Lung Cancer. Sci Rep, vol.9, issue.1, p.31506498, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02509474

C. Nicolò, C. Périer, M. Prague, G. Macgrogan, O. Saut et al., Machine Learning versus Mechanistic Modeling for Prediction of Metastatic Relapse in Breast Cancer, JCO Clin Cancer Inform, 2019.