F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J Clin, vol.68, issue.6, pp.394-424, 2018.

H. Lilja, D. Ulmert, and A. J. Vickers, Prostate-specific antigen and prostate cancer: prediction, detection and monitoring, Nat Rev Cancer, vol.8, issue.4, pp.268-78, 2008.

J. M. Martin, S. Supiot, and D. R. Berthold, Pharmacotherapeutic management of locally advanced prostate cancer: current status, Drugs, vol.71, issue.8, pp.1019-1060, 2011.

I. Kurth, L. Hein, K. Mäbert, C. Peitzsch, L. Koi et al., Cancer stem cell related markers of radioresistance in head and neck squamous cell carcinoma, Oncotarget, vol.6, issue.33, pp.34494-509, 2015.

E. Arechaga-ocampo, C. Lopez-camarillo, N. Villegas-sepulveda, C. H. Gonzalez-de-la-rosa, I. X. Perez-añorve et al., Tumor suppressor miR-29c regulates radioresistance in lung cancer cells, Tumor Biol, vol.39, issue.3, p.1010428317695010, 2017.

K. M. Ahmed, S. Dong, M. Fan, and J. J. Li, Nuclear Factor-?B p65 Inhibits Mitogen-Activated Protein Kinase Signaling Pathway in Radioresistant Breast Cancer Cells, Mol Cancer Res, vol.4, issue.12, pp.945-55, 2006.

M. Hazawa, Y. Hosokawa, S. Monzen, H. Yoshino, and I. Kashiwakura, Regulation of DNA damage response and cell cycle in radiation-resistant HL60 myeloid leukemia cells, Oncol Rep, vol.28, issue.1, pp.55-61, 2012.

K. Murata, R. Saga, S. Monzen, E. Tsuruga, K. Hasegawa et al., Understanding the mechanism underlying the acquisition of radioresistance in human prostate cancer cells, Oncol Lett, vol.17, issue.6, pp.5830-5838, 2019.

U. S. Srinivas, B. Tan, B. A. Vellayappan, and A. D. Jeyasekharan, ROS and the DNA damage response in cancer, Redox Biol, vol.25, p.101084, 2019.

P. P. Connell and S. Hellman, Advances in Radiotherapy and Implications for the Next Century: A Historical Perspective, Cancer Res, vol.69, issue.2, pp.383-92, 2009.

M. Redza-dutordoir and A. Da, Activation of apoptosis signalling pathways by reactive oxygen species, Biochim Biophys Acta BBA Mol Cell Res, vol.1863, issue.12, pp.2977-92, 2016.

N. Chan and R. G. Bristow, Contextual" synthetic lethality and/or loss of heterozygosity: tumor hypoxia and modification of DNA repair, Clin Cancer Res Off J Am Assoc Cancer Res, vol.16, issue.18, pp.4553-60, 2010.

A. R. Padhani, K. A. Krohn, J. S. Lewis, and M. Alber, Imaging oxygenation of human tumours, Eur Radiol, vol.17, issue.4, pp.861-72, 2007.

V. A. Potiron, R. Abderrahmani, K. Clément-colmou, S. Marionneau-lambot, T. Oullier et al., Improved Functionality of the Vasculature during Conventionally Fractionated Radiation Therapy of Prostate Cancer, PLoS One, vol.8, issue.12, p.84076, 2013.

S. Supiot, C. Rousseau, M. Dore, C. Chèze-le-rest, C. Kandel-aznar et al., Reoxygenation during radiotherapy in intermediate-risk prostate cancer, Radiother Oncol, vol.133, pp.16-25, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02265798

O. Guipaud, C. Jaillet, K. Clément-colmou, A. François, S. Supiot et al., The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy, Br J Radiol, vol.91, p.20170762, 1089.
URL : https://hal.archives-ouvertes.fr/inserm-01782208

M. Garcia-barros, F. Paris, C. Cordon-cardo, D. Lyden, S. Rafii et al., Tumor response to radiotherapy regulated by endothelial cell apoptosis, Science, vol.300, issue.5622, pp.1155-1164, 2003.

F. Chen, C. Chiang, C. Wang, C. Tsai, J. Lee et al., Radiotherapy Decreases Vascular Density and Causes Hypoxia with Macrophage Aggregation in TRAMP-C1 Prostate Tumors, Clin Cancer Res Off J Am Assoc Cancer Res, vol.15, issue.5, pp.1721-1730, 2009.

H. E. Barker, J. Paget, A. A. Khan, and K. J. Harrington, The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence, Nat Rev Cancer, vol.15, issue.7, pp.409-434, 2015.

Y. Liu, Y. Dong, L. Kong, F. Shi, H. Zhu et al., Abscopal effect of radiotherapy combined with immune checkpoint inhibitors, J Hematol OncolJ Hematol Oncol, vol.11, issue.1, p.104, 2018.

T. Mitani, R. Yamaji, Y. Higashimura, N. Harada, Y. Nakano et al., Hypoxia enhances transcriptional activity of androgen receptor through hypoxiainducible factor-1? in a low androgen environment, J Steroid Biochem Mol Biol, vol.123, issue.1-2, pp.58-64, 2011.

M. E. Tan, J. Li, H. E. Xu, K. Melcher, and Y. E. , Androgen receptor: structure, role in prostate cancer and drug discovery, Acta Pharmacol Sin, vol.36, issue.1, pp.3-23, 2015.

Y. Yin, R. Li, K. Xu, S. Ding, J. Li et al., Androgen Receptor Variants Mediate DNA Repair after Prostate Cancer Irradiation, Cancer Res, vol.77, issue.18, pp.4745-54, 2017.

M. Yao, L. Rogers, N. Suchowerska, D. Choe, A. et al., Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target, Radiother Oncol, vol.128, issue.2, pp.283-300, 2018.

J. A. Locke, A. D. Pra, S. Supiot, P. Warde, and R. G. Bristow, Synergistic action of image-guided radiotherapy and androgen deprivation therapy, Nat Rev Urol, vol.12, issue.4, pp.193-204, 2015.

M. Chua and R. G. Bristow, Testosterone in Androgen Receptor Signaling and DNA Repair: Enemy or Frenemy?, Clin Cancer Res, vol.22, issue.13, pp.3124-3130, 2016.

K. Mahajan, D. Coppola, B. Rawal, Y. A. Chen, H. R. Lawrence et al., Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer, J Biol Chem, vol.287, issue.26, pp.22112-22134, 2012.

D. E. Spratt, M. J. Evans, B. J. Davis, M. G. Doran, M. X. Lee et al., Androgen Receptor Upregulation Mediates Radioresistance after Ionizing Radiation, Cancer Res, vol.75, issue.22, pp.4688-96, 2015.

J. R. Czochor and P. M. Glazer, microRNAs in Cancer Cell Response to Ionizing Radiation, Antioxid Redox Signal, vol.21, issue.2, pp.293-312, 2014.

E. Korpela, D. Vesprini, and S. K. Liu, MicroRNA in radiotherapy: miRage or miRador?, Br J Cancer, vol.112, issue.5, pp.777-82, 2015.

H. Hu and R. A. Gatti, MicroRNAs: new players in the DNA damage response, J Mol Cell Biol, vol.3, issue.3, pp.151-159, 2011.

P. Gandellini, T. Rancati, R. Valdagni, and N. Zaffaroni, miRNAs in tumor radiation response: bystanders or participants?, Trends Mol Med, vol.20, issue.9, pp.529-568, 2014.

J. Ni, J. Bucci, L. Chang, D. Malouf, P. Graham et al., Targeting MicroRNAs in Prostate Cancer Radiotherapy, Theranostics, vol.7, issue.13, pp.3243-59, 2017.

N. L. Simone, B. P. Soule, D. Ly, A. D. Saleh, J. E. Savage et al., Ionizing Radiation-Induced Oxidative Stress Alters miRNA Expression, PLoS One, vol.4, issue.7, p.6377, 2009.

T. Templin, S. Paul, S. A. Amundson, E. F. Young, C. A. Barker et al., Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients, Int J Radiat Oncol Biol Phys, vol.80, issue.2, pp.549-57, 2011.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, vol.116, issue.2, pp.281-97, 2004.

S. Lin and R. I. Gregory, MicroRNA biogenesis pathways in cancer, Nat Rev Cancer, vol.15, issue.6, pp.321-354, 2015.

A. Eulalio, E. Huntzinger, and E. Izaurralde, Getting to the Root of miRNA-Mediated Gene Silencing, Cell, vol.132, issue.1, pp.9-14, 2008.

Y. Peng and C. M. Croce, The role of MicroRNAs in human cancer, Signal Transduct Target Ther, vol.1, p.15004, 2016.

X. Huang, S. Taeb, S. Jahangiri, U. Emmenegger, E. Tran et al., miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1, Cancer Res, vol.73, issue.23, pp.6972-86, 2013.

C. Leung, S. Li, T. Chen, M. Ho, L. Hu et al., Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment, Oncol Rep, vol.31, issue.3, pp.1067-78, 2014.

C. Xu, Y. Fan, J. Wang, and W. , MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1, Eur Rev Med Pharmacol Sci, vol.20, issue.8, pp.1501-1509, 2016.

M. John-aryankalayil, S. T. Palayoor, A. Y. Makinde, D. Cerna, C. B. Simone et al., Fractionated Radiation Alters Oncomir and Tumor Suppressor miRNAs in Human Prostate Cancer Cells, Radiat Res, vol.178, issue.3, pp.105-122, 2012.

F. Wang, A. Mao, J. Tang, Q. Zhang, J. Yan et al., microRNA-16-5p enhances radiosensitivity through modulating Cyclin D1/E1-pRb-E2F1 pathway in prostate cancer cells, J Cell Physiol, vol.234, issue.8, pp.13182-90, 2019.

Z. Tao, S. Xu, H. Ruan, T. Wang, W. Song et al., MiR-195/-16 Family Enhances Radiotherapy via T Cell Activation in the Tumor Microenvironment by Blocking the PD-L1 Immune Checkpoint, Cell Physiol Biochem, vol.48, issue.2, pp.801-815, 2018.

S. Josson, S. Sung, K. Lao, L. Chung, and P. Johnstone, Radiation modulation of microRNA in prostate cancer cell lines, Prostate, vol.68, issue.15, pp.1599-606, 2008.

A. Mao, Y. Liu, Y. Wang, Q. Zhao, X. Zhou et al., miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells, Tumour Biol J Int Soc Oncodevelopmental Biol Med, vol.37, issue.4, pp.4831-4871, 2016.

A. Mao, Q. Zhao, X. Zhou, C. Sun, J. Si et al., MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells, Sci Rep, vol.6, p.27346, 2016.

B. Li, X. Shi, D. Nori, C. Chao, A. M. Chen et al., Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells, Prostate, vol.71, issue.6, pp.567-74, 2011.

N. Mcdermott, A. Meunier, S. Wong, V. Buchete, and L. Marignol, Profiling of a panel of radioresistant prostate cancer cells identifies deregulation of key miRNAs, Clin Transl Radiat Oncol, vol.2, pp.63-71, 2017.

N. Mercatelli, V. Coppola, D. Bonci, F. Miele, A. Costantini et al., The Inhibition of the Highly Expressed Mir-221 and Mir-222 Impairs the Growth of Prostate Carcinoma Xenografts in Mice, PLoS One, vol.3, issue.12, p.4029, 2008.

Z. Xu, Y. Zhang, J. Ding, W. Hu, C. Tan et al.,

, Downregulates Mitochondrial Antioxidant Enzymes and Enhances the Radiosensitivity of Prostate Cancer Cells, Mol Ther Nucleic Acids, vol.13, pp.64-77, 2018.

A. C. Mueller, D. Sun, and A. Dutta, The miR-99 family regulates the DNA damage response through its target SNF2H, Oncogene, vol.32, issue.9, pp.1164-72, 2013.

P. Gong, T. Zhang, D. He, and J. Hsieh, MicroRNA-145 Modulates Tumor Sensitivity to Radiation in Prostate Cancer, Radiat Res, vol.184, issue.6, pp.630-638, 2015.

K. Hatano, B. Kumar, Y. Zhang, J. B. Coulter, M. Hedayati et al., A functional screen identifies miRNAs that inhibit DNA repair and sensitize prostate cancer cells to ionizing radiation, Nucleic Acids Res, vol.43, issue.8, pp.4075-86, 2015.

Y. Agaoglu, F. Kovancilar, M. Dizdar, Y. Darendeliler, E. Holdenrieder et al., Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer, Tumour Biol J Int Soc Oncodevelopmental Biol Med, vol.32, issue.3, pp.583-591, 2011.

Z. Chen, G. Zhang, H. Li, J. Luo, Z. Li et al., A panel of five circulating microRNAs as potential biomarkers for prostate cancer, Prostate, vol.72, issue.13, pp.1443-52, 2012.

P. Porzycki, E. Ciszkowicz, M. Semik, and M. Tyrka, Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition, Int Urol Nephrol, vol.50, issue.9, pp.1619-1645, 2018.

E. Richardsen, S. Andersen, C. Melbø-jørgensen, M. Rakaee, N. Ness et al., MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer, Sci Rep, vol.23, p.9, 2019.

C. Liu, R. Liu, D. Zhang, Q. Deng, B. Liu et al., MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes, Nat Commun, vol.8, issue.1, pp.1-14, 2017.

S. M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis et al., RAS is regulated by the let-7 microRNA family, Cell, vol.120, issue.5, pp.635-682, 2005.

V. B. Sampson, N. H. Rong, J. Han, Q. Yang, V. Aris et al., MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells, Cancer Res, vol.67, issue.20, pp.9762-70, 2007.

R. C. Fernandes, T. E. Hickey, W. D. Tilley, and L. A. Selth, Interplay between the androgen receptor signaling axis and microRNAs in prostate cancer, Endocr Relat Cancer, vol.26, issue.5, pp.237-57, 2019.

B. Hu, X. Wang, S. Hu, X. Ying, P. Wang et al., miR-21-mediated Radioresistance Occurs via Promoting Repair of DNA Double Strand Breaks, J Biol Chem, vol.292, issue.8, pp.3531-3571, 2017.

J. Ribas and S. E. Lupold, The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer, Cell Cycle, vol.9, issue.5, pp.923-932, 2010.

J. Ribas, X. Ni, M. Haffner, E. A. Wentzel, A. H. Salmasi et al., miR-21: an androgen receptor-regulated microRNA that promotes hormonedependent and hormone-independent prostate cancer growth, Cancer Res, vol.69, issue.18, pp.7165-7174, 2009.

R. Yentrapalli, J. Merl-pham, O. Azimzadeh, L. Mutschelknaus, C. Peters et al., Quantitative changes in the protein and miRNA cargo of plasma exosome-like vesicles after exposure to ionizing radiation, Int J Radiat Biol, vol.93, issue.6, pp.569-80, 2017.

R. El-bezawy, S. Tinelli, M. Tortoreto, V. Doldi, V. Zuco et al., miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKC? and ZEB1 inhibition, J Exp Clin Cancer Res CR, vol.38, issue.1, p.51, 2019.

G. Wanner, C. Mayer, R. Kehlbach, H. P. Rodemann, and K. Dittmann, Activation of protein kinase Cepsilon stimulates DNA-repair via epidermal growth factor receptor nuclear accumulation, Radiother Oncol J Eur Soc Ther Radiol Oncol, vol.86, issue.3, pp.383-90, 2008.

R. El-bezawy, D. Cominetti, N. Fenderico, V. Zuco, G. L. Beretta et al., miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis, Cancer Lett, vol.395, pp.53-62, 2017.

W. R. Polkinghorn, J. S. Parker, M. X. Lee, E. M. Kass, D. E. Spratt et al., Androgen receptor signaling regulates DNA repair in prostate cancers, Cancer Discov, vol.3, issue.11, pp.1245-53, 2013.

O. Larne, Z. Hagman, H. Lilja, A. Bjartell, A. Edsjö et al., miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis, Carcinogenesis, vol.36, issue.8, pp.858-66, 2015.

R. Kanwal, A. R. Plaga, X. Liu, G. C. Shukla, and S. Gupta, MicroRNAs in prostate cancer: Functional role as biomarkers, Cancer Lett, vol.407, pp.9-20, 2017.

P. Östling, S. Leivonen, A. Aakula, P. Kohonen, R. Mäkelä et al., Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells, Cancer Res, vol.71, issue.5, pp.1956-67, 2011.

K. Sikand, J. E. Slaibi, R. Singh, S. D. Slane, and G. C. Shukla, miR 488* inhibits androgen receptor expression in prostate carcinoma cells, Int J Cancer, vol.129, issue.4, pp.810-819, 2011.

A. Sancar, L. A. Lindsey-boltz, K. Ünsal-kaçmaz, and S. Linn, Molecular Mechanisms of Mammalian DNA Repair and the DNA Damage Checkpoints, Annu Rev Biochem, vol.73, issue.1, pp.39-85, 2004.

F. Takeshita, L. Patrawala, M. Osaki, R. Takahashi, Y. Yamamoto et al., Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes, Mol Ther J Am Soc Gene Ther, vol.18, issue.1, pp.181-188, 2010.

Z. Zhang, L. Shao, Y. Wang, and X. Luo, MicroRNA-501-3p restricts prostate cancer growth through regulating cell cycle-related and expression-elevated protein in tumor/cyclin D1 signaling, Biochem Biophys Res Commun, vol.509, issue.3, pp.746-52, 2019.

Q. Dong, P. Meng, T. Wang, W. Qin, W. Qin et al., MicroRNA Let-7a Inhibits Proliferation of Human Prostate Cancer Cells In Vitro and In Vivo by Targeting E2F2 and CCND2, PLoS One, vol.5, issue.4, p.10147, 2010.

Y. Zheng, C. Zhu, L. Ma, P. Shao, C. Qin et al., miRNA-154-5p Inhibits Proliferation, Migration and Invasion by Targeting E2F5 in Prostate Cancer Cell Lines, Urol Int, vol.98, issue.1, pp.102-112, 2017.

C. Zhu, P. Shao, M. Bao, P. Li, H. Zhou et al., miR-154 inhibits prostate cancer cell proliferation by targeting CCND2, Urol Oncol Semin Orig Investig, vol.32, issue.1, pp.31-40, 2014.

Y. Tang, Y. Cui, Z. Li, Z. Jiao, Y. Zhang et al., Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells, J Exp Clin Cancer Res, vol.35, issue.1, p.7, 2016.

S. M. Lynch, M. M. Mckenna, C. P. Walsh, and D. J. Mckenna, miR-24 regulates CDKN1B/ p27 expression in prostate cancer, Prostate, vol.76, issue.7, pp.637-685, 2016.

S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G. V. Frajese et al., miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1, J Biol Chem, vol.282, issue.32, pp.23716-23740, 2007.

X. Duan, X. Liu, Y. Li, Y. Cao, A. Silayiding et al., MicroRNA-498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN, Kaohsiung J Med Sci, vol.35, issue.11, pp.659-71, 2019.

E. Pashaei, E. Pashaei, M. Ahmady, M. Ozen, and N. Aydin, Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy, PLoS One, vol.12, issue.6, p.179543, 2017.

D. Eriksson and T. Stigbrand, Radiation-induced cell death mechanisms, Tumour Biol J Int Soc Oncodevelopmental Biol Med, vol.31, issue.4, pp.363-72, 2010.

G. P. Bromfield, A. Meng, P. Warde, and R. G. Bristow, Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill, Prostate Cancer Prostatic Dis, vol.6, issue.1, pp.73-85, 2003.

C. Ye, N. Sun, Y. Ma, Q. Zhao, Q. Zhang et al., MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells, FEBS Lett, vol.589, issue.6, pp.702-711, 2015.

S. Cho, S. Cinghu, J. Yu, and W. Park, Helicase-like transcription factor confers radiation resistance in cervical cancer through enhancing the DNA damage repair capacity, J Cancer Res Clin Oncol, vol.137, issue.4, pp.629-666, 2011.

C. Wang, W. Tao, S. Ni, Q. Chen, Z. Zhao et al., Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells, Cancer Sci, vol.106, issue.4, pp.375-82, 2015.

J. Cheng, T. Bawa, P. Lee, L. Gong, and E. Yeh, Role of Desumoylation in the Development of Prostate Cancer, Neoplasia, vol.8, issue.8, pp.667-76, 2006.

H. Liao, Y. Xiao, Y. Hu, Y. Xiao, Z. Yin et al., microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells, Oncol Lett, vol.10, issue.4, pp.2055-62, 2015.

Z. Kong, D. Xie, T. Boike, P. Raghavan, S. Burma et al., Downregulation of human DAB2IP gene expression in prostate cancer cells results in resistance to ionizing radiation, Cancer Res, vol.70, issue.7, pp.2829-2868, 2010.

B. Bao, A. Ahmad, D. Kong, S. Ali, A. S. Azmi et al., Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF, PLoS One, vol.7, issue.8, p.43726, 2012.

S. Supiot, C. Rousseau, M. Dore, C. Cheze-le-rest, C. Kandel-aznar et al., Evaluation of tumor hypoxia prior to radiotherapy in intermediate-risk prostate cancer using 18F-fluoromisonidazole PET/CT: a pilot study, Oncotarget, vol.9, issue.11, pp.10005-10020, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01823478

A. S. Chung, J. Lee, and N. Ferrara, Targeting the tumour vasculature: insights from physiological angiogenesis, Nat Rev Cancer, vol.10, issue.7, pp.505-519, 2010.

R. Rupaimoole, G. A. Calin, G. Lopez-berestein, and A. K. Sood, miRNA Deregulation in Cancer Cells and the Tumor Microenvironment, Cancer Discov, vol.6, issue.3, pp.235-281, 2016.

H. Jung, L. Fattet, and J. Yang, Molecular Pathways: Linking Tumor Microenvironment to Epithelial-Mesenchymal Transition in Metastasis, Clin Cancer Res Off J Am Assoc Cancer Res, vol.21, issue.5, pp.962-970, 2015.

W. Wang, M. Liu, Y. Guan, and Q. Wu, Hypoxia-Responsive Mir-301a and Mir-301b Promote Radioresistance of Prostate Cancer Cells via Downregulating NDRG2, Med Sci Monit Int Med J Exp Clin Res, vol.22, pp.2126-2158, 2016.

M. Kim, J. Lim, Y. Yang, M. Lee, and J. Lim, N-myc downstream-regulated gene 2 (NDRG2) suppresses the epithelial-mesenchymal transition (EMT) in breast cancer cells via STAT3/Snail signaling, Cancer Lett, vol.354, issue.1, pp.33-42, 2014.

H. Gu, M. Liu, C. Ding, X. Wang, R. Wang et al., Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1, Cancer Med, vol.5, issue.6, pp.1174-82, 2016.

B. Zhao, L. Liu, J. Mao, Z. Zhang, Q. Wang et al., PIM1 mediates epithelialmesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis, Cell Death Dis, vol.9, issue.3, p.307, 2018.

W. Hu, C. Fan, P. Jiang, Z. Ma, X. Yan et al., Emerging role of N-myc downstream-regulated gene 2 (NDRG2) in cancer, Oncotarget, vol.7, issue.1, pp.209-232, 2016.

T. Wu and Y. Dai, Tumor microenvironment and therapeutic response, Cancer Lett, vol.387, pp.61-69, 2017.

H. Menon, R. Ramapriyan, T. R. Cushman, V. Verma, H. H. Kim et al., Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment, Front Immunol, vol.10, p.193, 2019.

L. Chaiswing, H. L. Weiss, R. D. Jayswal, . St, D. K. Clair et al., Profiles of Radioresistance Mechanisms in Prostate Cancer, Crit Rev Oncog, vol.23, issue.1-2, pp.39-67, 2018.

J. Chou, P. Shahi, and Z. Werb, microRNA-mediated regulation of the tumor microenvironment, Cell Cycle, vol.12, issue.20, pp.3262-71, 2013.

P. R. Kuninty, J. Schnittert, G. Storm, and J. Prakash, MicroRNA Targeting to Modulate Tumor Microenvironment, Front Oncol, vol.6, p.3, 2016.

N. Nishida, H. Yano, T. Nishida, T. Kamura, and M. Kojiro, Angiogenesis in Cancer. Vasc Health Risk Manag, vol.2, pp.213-222, 2006.

W. Lou, J. Liu, Y. Gao, G. Zhong, D. Chen et al., MicroRNAs in cancer metastasis and angiogenesis, Oncotarget, vol.8, issue.70, pp.115787-802, 2017.

P. N. Plummer, R. Freeman, R. J. Taft, J. Vider, M. Sax et al., MicroRNAs Regulate Tumor Angiogenesis Modulated by Endothelial Progenitor Cells, Cancer Res, vol.73, issue.1, pp.341-52, 2013.

Y. Wang, L. Wang, C. Chen, and X. Chu, New insights into the regulatory role of microRNA in tumor angiogenesis and clinical implications, Mol Cancer, vol.17, issue.1, p.22, 2018.

Z. Lin, G. Chen, Y. Zhang, H. He, Y. Liang et al., MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer, Mol Cancer, vol.16, issue.1, p.48, 2017.

B. Guan, K. Wu, J. Zeng, S. Xu, L. Mu et al., Tumor-suppressive microRNA-218 inhibits tumor angiogenesis via targeting the mTOR component RICTOR in prostate cancer, Oncotarget, vol.8, issue.5, pp.8162-72, 2016.

T. F. Gajewski, H. Schreiber, and Y. Fu, Innate and adaptive immune cells in the tumor microenvironment, Nat Immunol, vol.14, issue.10, pp.1014-1036, 2013.

V. R. Juneja, K. A. Mcguire, R. T. Manguso, M. W. Lafleur, N. Collins et al., PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity, J Exp Med, vol.214, issue.4, pp.895-904, 2017.

U. Lo, C. Lee, M. Lee, and J. Hsieh, The Role and Mechanism of Epithelialto-Mesenchymal Transition in Prostate Cancer Progression, Int J Mol Sci, vol.30, issue.10, p.18, 2017.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.

K. Sekhon, N. Bucay, S. Majid, R. Dahiya, and S. Saini, MicroRNAs and epithelialmesenchymal transition in prostate cancer, Oncotarget, vol.7, issue.41, pp.67597-611, 2016.

D. Ren, M. Wang, W. Guo, S. Huang, Z. Wang et al., Double-negative feedback loop between ZEB2 and miR-145 regulates epithelialmesenchymal transition and stem cell properties in prostate cancer cells, Cell Tissue Res, vol.358, issue.3, pp.763-78, 2014.

W. Guo, D. Ren, X. Chen, X. Tu, S. Huang et al., HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145, J Cell Biochem, vol.114, issue.7, pp.1606-1621, 2013.

P. Gandellini, V. Profumo, A. Casamichele, N. Fenderico, S. Borrelli et al., miR-205 regulates basement membrane deposition in human prostate: implications for cancer development, Cell Death Differ, vol.19, issue.11, pp.1750-60, 2012.

P. Gandellini, M. Folini, N. Longoni, M. Pennati, M. Binda et al., miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon, Cancer Res, vol.69, issue.6, pp.2287-95, 2009.

P. Zhang, L. Wang, C. Rodriguez-aguayo, Y. Yuan, B. G. Debeb et al., miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13, vol.5, p.5671, 2014.

Y. Wang, J. L. Yuan, Y. T. Zhang, J. J. Ma, P. Xu et al., Inhibition of Both EGFR and IGF1R Sensitized Prostate Cancer Cells to Radiation by Synergistic Suppression of DNA Homologous Recombination Repair, PLoS One, vol.8, issue.8, p.68784, 2013.

P. Ru, R. Steele, P. Newhall, N. J. Phillips, K. Toth et al., miRNA-29b Suppresses Prostate Cancer Metastasis by Regulating Epithelial-Mesenchymal Transition Signaling, Mol Cancer Ther, vol.11, issue.5, pp.1166-73, 2012.

J. Banyard, I. Chung, A. M. Wilson, G. Vetter, L. Béchec et al., Regulation of epithelial plasticity by miR-424 and miR-200 in a new prostate cancer metastasis model, Sci Rep, vol.3, p.3151, 2013.

C. P. Bracken, P. A. Gregory, Y. Khew-goodall, and G. J. Goodall, The role of microRNAs in metastasis and epithelial-mesenchymal transition, Cell Mol Life Sci CMLS, vol.66, issue.10, pp.1682-99, 2009.

D. Kong, Y. Li, Z. Wang, S. Banerjee, A. Ahmad et al., miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells, Stem Cells Dayt Ohio, vol.27, issue.8, pp.1712-1733, 2009.

C. Zhu, J. Li, G. Cheng, H. Zhou, L. Tao et al., miR-154 inhibits EMT by targeting HMGA2 in prostate cancer cells, Mol Cell Biochem, vol.379, issue.1-2, pp.69-75, 2013.

D. J. Mulholland, L. M. Tran, Y. Li, H. Cai, A. Morim et al., Cell Autonomous Role of PTEN in Regulating Castration-Resistant Prostate Cancer Growth, Cancer Cell, vol.19, issue.6, pp.792-804, 2011.

E. He, F. Pan, G. Li, and J. Li, Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation, PLoS One, vol.10, issue.5, p.126149, 2015.

N. Shao, G. Ma, J. Zhang, and W. Zhu, miR-221-5p enhances cell proliferation and metastasis through post-transcriptional regulation of SOCS1 in human prostate cancer, BMC Urol, vol.18, issue.1, p.14, 2018.

L. Chang, P. Graham, J. Hao, J. Ni, J. Deng et al., Cancer stem cells and signaling pathways in radioresistance, Oncotarget, vol.7, issue.10, pp.11002-11019, 2015.

W. Xiao, P. H. Graham, C. A. Power, J. Hao, J. H. Kearsley et al., CD44 is a biomarker associated with human prostate cancer radiation sensitivity, Clin Exp Metastasis, vol.29, issue.1, pp.1-9, 2012.

J. K. Rane, H. Erb, G. Nappo, V. M. Mann, M. S. Simms et al., Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/ 100-mediated radiation response in stem-like cells from human prostate cancers, Oncotarget, vol.7, issue.32, pp.51965-80, 2016.

G. Van-niel, D. Angelo, G. Raposo, and G. , Shedding light on the cell biology of extracellular vesicles, Nat Rev Mol Cell Biol, vol.19, issue.4, p.213, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02359760

G. Raposo and W. Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and friends, J Cell Biol, vol.200, issue.4, pp.373-83, 2013.

H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee et al., Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat Cell Biol, vol.9, issue.6, pp.654-663, 2007.

S. A. Melo, H. Sugimoto, J. T. O'connell, N. Kato, A. Villanueva et al., Cancer Exosomes Perform Cell-Independent MicroRNA Biogenesis and Promote Tumorigenesis, Cancer Cell, vol.26, issue.5, pp.707-728, 2014.

C. F. Ruivo, B. Adem, M. Silva, and S. A. Melo, The Biology of Cancer Exosomes: Insights and New Perspectives, Cancer Res, vol.77, issue.23, pp.6480-6488, 2017.

J. Guduric-fuchs, O. Connor, A. Camp, B. O'neill, C. L. Medina et al., Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types, BMC Genomics, vol.13, issue.1, p.357, 2012.

L. Cheng, R. A. Sharples, B. J. Scicluna, and A. F. Hill, Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood, J Extracell Vesicles, vol.3, issue.1, p.23743, 2014.

N. P. Hessvik, K. Sandvig, and A. Llorente, Exosomal miRNAs as Biomarkers for Prostate Cancer, Front Genet, vol.4, p.36, 2013.

B. Malla, D. M. Aebersold, and P. A. Dal, Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy, J Transl Med, vol.16, issue.1, p.223, 2018.

Y. Yang, J. Guo, and Z. Shao, miR-21 targets and inhibits tumor suppressor gene PTEN to promote prostate cancer cell proliferation and invasion: An experimental study, Asian Pac J Trop Med, vol.10, issue.1, pp.87-91, 2017.

T. Li, D. Li, J. Sha, P. Sun, and Y. Huang, MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells, Biochem Biophys Res Commun, vol.383, issue.3, pp.280-285, 2009.

K. Schramedei, N. Mörbt, G. Pfeifer, J. Läuter, M. Rosolowski et al., MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4, Oncogene, vol.30, issue.26, pp.2975-85, 2011.

Q. Yu, P. Li, M. Weng, S. Wu, Y. Zhang et al., Nano-Vesicles are a Potential Tool to Monitor Therapeutic Efficacy of Carbon Ion Radiotherapy in Prostate Cancer, J Biomed Nanotechnol, vol.14, issue.1, pp.168-78, 2018.

Q. Gao and J. Zheng, microRNA-323 upregulation promotes prostate cancer growth and docetaxel resistance by repressing p73, Biomed Pharmacother, vol.97, pp.528-562, 2018.

Q. Gao, X. Yao, and J. Zheng, MiR-323 Inhibits Prostate Cancer Vascularization Through Adiponectin Receptor, Cell Physiol Biochem, vol.36, issue.4, pp.1491-1499, 2015.

S. Josson, M. Gururajan, S. Y. Sung, P. Hu, C. Shao et al., Stromal fibroblast-derived miR-409 promotes epithelial-to-mesenchymal transition and prostate tumorigenesis, Oncogene, vol.34, issue.21, pp.2690-2699, 2015.

S. Wang, X. Wang, J. Li, S. Meng, Z. Liang et al., c-Met, CREB1 and EGFR are involved in miR-493-5p inhibition of EMT via AKT/GSK-3?/Snail signaling in prostate cancer, Oncotarget, vol.8, issue.47, pp.82303-82316, 2017.

P. Shen, X. Chen, Y. Liao, N. Chen, Q. Zhou et al., MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer, Prostate, vol.74, issue.7, pp.756-67, 2014.

Y. Du, H. Zhu, X. Liu, L. Wang, J. Ning et al., MiR-543 Promotes Proliferation and Epithelial-Mesenchymal Transition in Prostate Cancer via Targeting RKIP, Cell Physiol Biochem, vol.41, issue.3, pp.1135-1181, 2017.

J. Ni, J. Bucci, D. Malouf, M. Knox, P. Graham et al., Exosomes in Cancer Radioresistance, Front Oncol, vol.9, p.869, 2019.

B. Malla, K. Zaugg, E. Vassella, D. M. Aebersold, and P. A. Dal, Exosomes and Exosomal MicroRNAs in Prostate Cancer Radiation Therapy, Int J Radiat Oncol Biol Phys, vol.98, issue.5, pp.982-95, 2017.

A. Al-mayah, S. L. Irons, R. C. Pink, D. Carter, and M. A. Kadhim, Possible role of exosomes containing RNA in mediating nontargeted effect of ionizing radiation, Radiat Res, vol.177, issue.5, pp.539-584, 2012.

A. Al-mayah, S. Bright, K. Chapman, S. Irons, P. Luo et al., The nontargeted effects of radiation are perpetuated by exosomes, Mutat Res, vol.772, pp.38-45, 2015.

L. Mutschelknaus, C. Peters, K. Winkler, R. Yentrapalli, T. Heider et al., Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation, PLoS One, vol.11, issue.3, p.152213, 2016.

W. T. Arscott, A. T. Tandle, S. Zhao, J. E. Shabason, I. K. Gordon et al., Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration, Transl Oncol, vol.6, issue.6, pp.638-686, 2013.

H. U. Ahmed, . El-shater, A. Bosaily, L. C. Brown, R. Gabe et al., Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study, Lancet Lond Engl, vol.389, pp.815-837, 2017.

S. Loeb, A. Vellekoop, H. U. Ahmed, J. Catto, M. Emberton et al., Systematic review of complications of prostate biopsy, Eur Urol, vol.64, issue.6, pp.876-92, 2013.

J. Mckiernan, M. J. Donovan, V. O'neill, S. Bentink, M. Noerholm et al., A Novel Urine Exosome Gene Expression Assay to Predict High-grade Prostate Cancer at Initial Biopsy, JAMA Oncol, vol.2, issue.7, pp.882-891, 2016.

D. Hessels, J. Klein-gunnewiek, I. Van-oort, H. Karthaus, G. Van-leenders et al., DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer, Eur Urol, vol.44, issue.1, pp.6-8, 2003.

M. J. Roobol, F. H. Schroder, P. Van-leeuwen, T. Wolters, R. Van-den-bergh et al., Performance of the prostate cancer antigen 3 (PCA3) gene and prostate-specific antigen in prescreened men: exploring the value of PCA3 for a first-line diagnostic test, Eur Urol, vol.58, issue.4, pp.475-81, 2010.

A. J. Vickers, A. M. Cronin, G. Aus, C. Pihl, C. Becker et al., A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Goteborg, Sweden BMC Med, vol.6, p.19, 2008.

A. Vickers, A. Cronin, M. Roobol, C. Savage, M. Peltola et al., Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication, J Clin Oncol Off J Am Soc Clin Oncol, vol.28, issue.15, pp.2493-2501, 2010.

C. Hoey and S. K. Liu, Circulating blood miRNAs for prostate cancer risk stratification: miRroring the underlying tumor biology with liquid biopsies, Res Rep Urol, vol.11, pp.29-42, 2019.

H. Schwarzenbach, N. Nishida, G. A. Calin, and K. Pantel, Clinical relevance of circulating cell-free microRNAs in cancer, Nat Rev Clin Oncol, vol.11, issue.3, pp.145-56, 2014.

A. H. Alhasan, A. W. Scott, J. J. Wu, G. Feng, J. J. Meeks et al., Circulating microRNA signature for the diagnosis of very high-risk prostate cancer, Proc Natl Acad Sci, vol.113, issue.38, pp.10655-60, 2016.

C. Hoey, M. Ahmed, F. Ghiam, A. Vesprini, D. Huang et al., Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy, J Transl Med, vol.17, issue.1, p.173, 2019.

R. Liu, E. Olkhov-mitsel, R. Jeyapala, F. Zhao, K. Commisso et al., Assessment of Serum microRNA Biomarkers to Predict Reclassification of Prostate Cancer in Patients on Active Surveillance, J Urol, vol.199, issue.6, pp.1475-81, 2018.

D. Bhagirath, T. L. Yang, N. Bucay, K. Sekhon, S. Majid et al., microRNA-1246 Is an Exosomal Biomarker for Aggressive Prostate Cancer, Cancer Res, vol.78, issue.7, pp.1833-1877, 2018.

X. Huang, T. Yuan, M. Liang, M. Du, S. Xia et al., Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer, Eur Urol, vol.67, issue.1, pp.33-41, 2015.

J. Jeon, E. Olkhov-mitsel, and H. Xie, Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome, J Natl Cancer Inst, vol.112, issue.3, pp.247-55, 2020.

K. L. Pellegrini, D. Patil, K. Douglas, G. Lee, K. Wehrmeyer et al., Detection of prostate cancer-specific transcripts in extracellular vesicles isolated from post-DRE urine, Prostate, vol.77, issue.9, pp.990-999, 2017.

A. H. Zedan, T. F. Hansen, J. Assenholt, J. S. Madsen, and P. Osther, Circulating miRNAs in localized/locally advanced prostate cancer patients after radical prostatectomy and radiotherapy, Prostate, vol.79, issue.4, pp.425-457, 2019.

Y. Sun, P. G. Hawkins, N. Bi, R. T. Dess, M. Tewari et al., Serum MicroRNA Signature Predicts Response to High-Dose Radiation Therapy in Locally Advanced Non-Small Cell Lung Cancer, Int J Radiat Oncol Biol Phys, vol.100, issue.1, pp.107-121, 2018.

H. Lin, L. Castillo, K. L. Mahon, K. Chiam, B. Y. Lee et al., Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer, Br J Cancer, vol.110, issue.10, pp.2462-71, 2014.

H. Zhang, Y. Zhu, Y. Yao, X. Zhang, S. Dai et al., Serum miRNA-21: elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy, Prostate, vol.71, issue.3, pp.326-357, 2011.

L. Chen, Y. Wen, J. Zhang, W. Sun, V. Lui et al., Prediction of radiotherapy response with a 5-microRNA signature-based nomogram in head and neck squamous cell carcinoma, Cancer Med, vol.7, issue.3, pp.726-761, 2018.

A. Li, C. Chan, Y. Chen, C. Lin, S. Chiang et al., microRNA expression pattern as an ancillary prognostic signature for radiotherapy, J Transl Med, vol.16, issue.1, p.341, 2018.

K. A. Higgins, N. F. Saba, D. M. Shin, J. J. Beitler, G. Chen et al., Circulating Pre-treatment miRNAs as Potential Biomarkers to Predict Radiation Toxicity, Int J Radiat Oncol Biol Phys, vol.99, issue.2, p.596, 2017.

P. S. Mitchell, R. K. Parkin, E. M. Kroh, B. R. Fritz, S. K. Wyman et al., Circulating microRNAs as stable blood-based markers for cancer detection, Proc Natl Acad Sci, vol.105, issue.30, pp.10513-10521, 2008.

J. A. Weber, D. H. Baxter, S. Zhang, D. Y. Huang, K. H. Huang et al., The microRNA spectrum in 12 body fluids, Clin Chem, vol.56, issue.11, pp.1733-1774, 2010.

T. Blondal, M. R. Brunetto, D. Cavallone, M. Mikkelsen, M. Thorsen et al., Genome-Wide Comparison of Next-Generation Sequencing and qPCR Platforms for microRNA Profiling in Serum, Methods Mol Biol Clifton NJ, vol.1580, pp.21-44, 2017.

H. Zeng, B. He, C. Yi, and J. Peng, Liquid biopsies: DNA methylation analyses in circulating cell-free DNA, J Genet Genomics, vol.45, issue.4, pp.185-92, 2018.

E. M. Kroh, R. K. Parkin, P. S. Mitchell, and M. Tewari, Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR), Methods San Diego Calif, vol.50, issue.4, pp.298-301, 2010.

V. Vignard, M. Labbé, N. Marec, G. André-grégoire, N. Jouand et al., MicroRNAs in Tumor Exosomes Drive Immune Escape in Melanoma, Cancer Immunol Res, p.2019, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02426329

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations