U. Galili, Evolution in primates by "Catastrophic-selection" interplay between enveloped virus epidemics, mutated genes of enzymes synthesizing carbohydrate antigens, and natural anticarbohydrate antibodies, Am J Phys Anthropol, vol.168, pp.352-63, 2019.

F. Yamamoto, E. Cid, M. Yamamoto, and A. Blancher, ABO research in the modern era of genomics, Transf Med Rev, vol.26, pp.103-121, 2012.

G. F. Springer and R. E. Horton, Blood group isoantibody stimulation in man by feeding blood-group active bacteria, J Clin Invest, vol.48, pp.1280-91, 1969.

R. Oriol, R. Mollicone, P. Couillin, A. M. Dalix, and J. J. Candelier, Genetic regulation of the expression of ABH and Lewis antigens in tissues, APMIS, vol.100, pp.28-38, 1992.

R. Buonomano, C. Tinguely, R. Rieben, P. J. Mohacsi, and U. E. Nydegger, Quantitation and characterization of anti-Galalpha1-3Gal antibodies in sera of 200 healthy persons, Xenotransplantation, vol.6, pp.173-80, 1999.

Y. Xu, J. Lee, Y. Ryu, J. Xu, S. Yang et al., Human B1 Cells are the Main Blood Group A-Specific B Cells That Have a Moderate Correlation With Anti-A Antibody Titer, Ann Lab Med, vol.40, pp.48-56, 2020.

Y. Cheng, G. Cheng, C. H. Chui, and F. Y. Lau, ABO blood group and susceptibility to severe acute respiratory syndrome, JAMA, vol.293, pp.1450-1451, 2005.

J. Zhao, Y. Yang, and H. Huang, Relationship between the ABO Blood Group and the COVID-19 Susceptib, vol.2020

A. C. Walls, X. Xiong, and Y. Park, Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion, Cell, vol.176, pp.1026-1065, 2019.

C. De-haan, D. Wit, M. Kuo, and L. , O-Glycosylation of the mouse hepatitis coronavirus membrane protein, Virus Res, vol.82, pp.77-81, 2002.

M. Oostra, C. De-haan, R. J. De-groot, and P. Rottier, Glycosylation of the Severe Acute Respiratory Syndrome Coronavirus Triple-Spanning Membrane Proteins 3a and M, J Virol, vol.80, pp.2326-2362, 2006.

M. Letko, A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nature Microbiol, 2020.

,

I. Hamming, W. Timens, M. Bulthuis, A. T. Lely, G. J. Navis et al., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J Pathol, vol.203, pp.631-737, 2004.

Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma et al., Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov, vol.2020

,

P. Guillon, M. Clément, and V. Sébille, Inhibition of the interaction beteen the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies, Glycobiology, vol.18, pp.1085-93, 2008.

D. Wrapp, N. Wang, and K. S. Corbett, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol.367, pp.1260-1263, 2020.

K. J. Posekany, H. K. Pittman, J. F. Bradfield, C. E. Haisch, and K. M. Verbanac, Induction of cytolytic anti-gal antibodies in ?-1,3-galactosyltransferase gene knockout mice by oral inoculation with Escherichia coli O86:B7 bacteria, Infect Immun, vol.70, pp.6215-6237, 2002.

J. Sianturi, Y. Manabe, and H. Li, Development of a-Gal-Antibody Conjugates to Increase Immune Response by Recruiting Natural Antibodies, Angew Chem Int Ed, vol.58, pp.4526-4556, 2019.