I. C. Mcmillen, C. L. Adam, and B. S. Muhlhausler, Early origins of obesity: programming the appetite regulatory system, J Physiol (Lond), vol.565, pp.9-17, 2005.

S. Bouret, B. E. Levin, and S. E. Ozanne, Gene-Environment Interactions Controlling Energy and Glucose Homeostasis and the Developmental Origins of Obesity, Physiol Rev, vol.47, 2014.

E. L. Sullivan and K. L. Grove, Metabolic imprinting in obesity, Forum Nutr, vol.63, pp.186-194, 2010.

P. D. Taylor and L. Poston, Developmental programming of obesity in mammals, Exp Physiol, vol.92, pp.287-298, 2007.

M. S. Martin-gronert and S. E. Ozanne, Programming of appetite and type 2 diabetes, Early Human Development, vol.81, pp.981-988, 2005.

T. L. Horvath and J. C. Bruning, Developmental programming of the hypothalamus: a matter of fat, Nat Med, vol.12, pp.52-53, 2006.

H. Chen, D. Simar, and M. J. Morris, Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: Interaction with postnatal nutritional environment, PLoS ONE, vol.4, p.6259, 2009.

S. G. Bouret, S. J. Draper, and R. B. Simerly, Trophic action of leptin on hypothalamic neurons that regulate feeding, Science, vol.304, pp.108-110, 2004.

S. G. Bouret, J. N. Gorski, C. M. Patterson, S. Chen, B. E. Levin et al., Hypothalamic neural projections are permanently disrupted in diet-induced obese rats, Cell Metab, vol.7, pp.179-185, 2008.

M. C. Vogt, L. Paeger, S. Hess, S. M. Steculorum, M. Awazawa et al., Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding, Cell, vol.156, pp.495-509, 2014.

S. L. Kirk, A. Samuelsson, M. Argenton, H. Dhonye, T. Kalamatianos et al., Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring, PLoS ONE, vol.4, p.5870, 2009.

U. Ozcan, Q. Cao, E. Yilmaz, A. Lee, N. N. Iwakoshi et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 ciabetes, Science, vol.306, pp.457-461, 2004.

U. Ö-zcan, E. Yilmaz, L. Furuhashi, M. Vaillancourt, E. Smith et al., Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes, Science, vol.313, pp.1137-1140, 2006.

L. Ozcan, A. S. Ergin, A. Lu, J. Chung, S. Sarkar et al., Endoplasmic reticulum stress plays a central role in development of leptin resistance, Cell Metab, vol.9, pp.35-51, 2009.

K. W. Williams, T. Liu, X. Kong, M. Fukuda, Y. Deng et al., Xbp1s in Pomc neurons connects ER stress with energy balance and glucose homeostasis, Cell Metab, vol.20, pp.471-482, 2014.

D. H. Perlmutter, Chemical chaperones: a pharmacological strategy for disorders of protein folding and trafficking, Pediatr Res, vol.52, pp.832-836, 2002.

L. Attig, G. Solomon, J. Ferezou, L. Abdennebi-najar, M. Taouis et al., Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats, Int J Obes, vol.32, pp.1153-1160, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00413887

S. Yura, H. Itoh, N. Sagawa, H. Yamamoto, H. Masuzaki et al., Role of premature leptin surge in obesity resulting from intrauterine undernutrition, Cell Metab, vol.1, pp.371-378, 2005.

M. H. Vickers, P. D. Gluckman, A. H. Coveny, P. L. Hofman, W. S. Cutfield et al., Neonatal leptin treatment reverses developmental programming, Endocrinology, vol.146, pp.4211-4216, 2005.

M. H. Vickers, P. D. Gluckman, A. H. Coveny, P. L. Hofman, W. S. Cutfield et al., The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy, Endocrinology, vol.149, pp.1906-1913, 2008.

S. G. Bouret, S. H. Bates, S. Chen, M. G. Myers, and R. B. Simerly, Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits, J Neurosci, vol.32, pp.1244-1252, 2012.

M. M. Glavas, M. A. Kirigiti, X. Q. Xiao, P. J. Enriori, S. K. Fisher et al., Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet, Endocrinology, vol.151, pp.1598-1610, 2010.

G. Collden, E. Balland, J. Parkash, C. E. Langlet, F. Prevot et al., Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin, Mol Metab, vol.4, pp.15-24, 2015.

E. Caron, P. Ciofi, V. Prevot, and S. G. Bouret, Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function, J Neurosci, vol.32, pp.11486-11494, 2012.

K. Bouyer and R. B. Simerly, Neonatal leptin exposure specifies innervation of presympathetic hypothalamic neurons and improves the metabolic status of leptin-deficient mice, J Neurosci, vol.33, pp.840-851, 2013.

A. Kamitakahara, K. Bouyer, C. H. Wang, and R. Simerly, A critical period for the trophic actions of leptin on AgRP neurons in the arcuate nucleus of the hypothalamus, J Comp Neurol, vol.526, pp.133-145, 2017.

S. Patterson and J. Skene, Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension, J Cell Biol, vol.124, pp.521-536, 1994.

L. M. Cortez, J. Campeau, G. Norman, M. Kalayil, J. Van-der-merwe et al., Bile acids reduce prion conversion, reduce neuronal loss, and prolong male survival in models of prion disease, J Virol, vol.89, pp.7660-7672, 2015.

P. B. Martinez-de-morentin, L. Varela, J. Ferno, R. Nogueiras, C. Dieguez et al., Hypothalamic lipotoxicity and the metabolic syndrome, Biochim Biophys Acta, vol.1801, pp.350-361, 2010.

S. C. Benoit, C. J. Kemp, C. F. Elias, W. Abplanalp, J. P. Herman et al., Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents, J Clin Invest, vol.119, pp.2577-2589, 2009.

K. A. Posey, D. J. Clegg, R. L. Printz, J. Byun, G. J. Morton et al., Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet, Am J Physiol Endocrinol Metab, vol.296, pp.1003-1012, 2009.

C. M. Mayer and D. D. Belsham, Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation, Endocrinology, vol.151, pp.576-585, 2010.

S. J. Choi, F. Kim, M. W. Schwartz, and B. E. Wisse, Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids, Am J Physiol Endocrinol Metab, vol.298, pp.1122-1130, 2010.

J. W. Mcfadden, A. S. Li, Q. Bandaru, V. V. Kim, E. K. Haughey et al., Increasing fatty acid oxidation remodels the hypothalamic neurometabolome to mitigate stress and inflammation, PLoS ONE, vol.9, 2014.

M. Milanski, G. Degasperi, A. Coope, J. Morari, R. Denis et al., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity, J Neurosci, vol.29, pp.359-370, 2009.

F. K. Cragle and G. Baldini, Mild lipid stress induces profound loss of MC4R protein abundance and function, Mol Endocrinol, vol.28, pp.357-367, 2014.

S. M. Steculorum, . Cg, B. Coupe, S. Croizier, Z. Andrews et al., Ghrelin programs development of hypothalamic feeding circuits, Journal Clin Invest, vol.125, pp.846-858, 2015.

B. Coupe, Y. Ishii, M. O. Dietrich, M. Komatsu, T. L. Horvath et al., Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation, Cell Metab, vol.15, pp.247-255, 2012.