A. Baicus, History of polio vaccination, World J Virol, vol.1, p.108, 2012.

D. N. Khalil, E. L. Smith, R. J. Brentjens, and J. D. Wolchok, The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy, Nat Rev Clin Oncol, vol.13, pp.273-90, 2016.

A. Hoos, Development of immuno-oncology drugs-from CTLA4 to PD1 to the next generations, Nat Rev Drug Discov, vol.15, pp.235-282, 2016.

C. R. Maldini, G. I. Ellis, and J. L. Riley, CAR T cells for infection, autoimmunity and allotransplantation, Nat Rev Immunol, vol.18, pp.605-621, 2018.

G. O. Fruhwirth, M. Kneilling, I. De-vries, B. Weigelin, M. Srinivas et al., The potential of in vivo imaging for optimization of molecular and cellular anti-cancer immunotherapies, Mol Imaging Biol, vol.20, pp.696-704, 2018.

G. Van-dongen, G. Visser, M. N. Lub-de-hooge, E. G. De-vries, and L. R. Perk, Immuno-PET: a navigator in monoclonal antibody development and applications, Oncologist, vol.12, pp.1379-89, 2007.

M. Roca, E. De-vries, J. F. Israel, O. Signore, and A. , Guidelines for the labelling of leucocytes with 111In-oxine. Inflammation/Infection Taskgroup of the European Association of Nuclear Medicine, Eur J Nucl Med Mol Imaging, vol.37, pp.835-876, 2010.

M. F. Kircher, S. S. Gambhir, and J. Grimm, Noninvasive cell-tracking methods, Nat Rev Clin Oncol, vol.8, pp.677-88, 2011.

P. Charoenphun, L. K. Meszaros, K. Chuamsaamarkkee, E. Sharif-paghaleh, J. R. Ballinger et al., Oxinate4 for long-term in vivo cell tracking by positron emission tomography, Eur J Nucl Med Mol Imaging, vol.42, pp.278-87, 2014.

N. Sato, H. Wu, K. O. Asiedu, L. P. Szajek, G. L. Griffiths et al., 89 Zr-Oxine complex PET cell imaging in monitoring cell-based therapies, Radiology, vol.275, pp.490-500, 2015.

J. G. Mcafee, G. Subramanian, and G. Gagne, Technique of leukocyte harvesting and labeling: problems and perspectives, Semin Nucl Med, vol.14, pp.83-106, 1984.

M. E. Phelps, J. Walsh, T. Mccarthy, N. Adonai, M. Iyer et al., Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography, Proc Natl Acad Sci, vol.99, pp.3030-3035, 2002.

M. R. Weist, R. Starr, B. Aguilar, J. Chea, J. K. Miles et al., PET of adoptively transferred chimeric antigen receptor T cells with 89Zr-Oxine, J Nucl Med, vol.59, pp.1531-1538, 2018.

G. Brown, B. Ellis, P. Locatelli, A. Jones, M. Fairclough et al., A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography, J Label Compd Radiopharm, vol.59, pp.270-276, 2016.

A. Gennari, H. Boutin, S. Alzabin, A. Jones, C. Prenant et al., Development of a method for the preparation of zirconium-89 radiolabelled chitosan nanoparticles as an application for leukocyte trafficking with positron emission tomography, Appl Radiat Isot, vol.130, pp.7-12, 2017.

A. Bansal, M. K. Pandey, Y. E. Demirhan, J. J. Nesbitt, R. J. Crespo-diaz et al., Novel 89Zr cell labeling approach for PET-based cell trafficking studies, EJNMMI Res, vol.5, p.19, 2015.

M. Collantes, B. Pelacho, M. J. García-velloso, J. J. Gavira, G. Abizanda et al., Non-invasive in vivo imaging of cardiac stem/progenitor cell biodistribution and retention after intracoronary and intramyocardial delivery in a swine model of chronic ischemia reperfusion injury, J Transl Med, vol.15, pp.1-11, 2017.

M. G. Macaskill, A. S. Tavares, J. Wu, C. Lucatelli, J. C. Mountford et al., PET cell tracking using 18F-FLT is not limited by local reuptake of free radiotracer, vol.7, p.44233, 2017.

P. Caravan, J. J. Ellison, T. J. Mcmurry, and R. B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications, Chem Rev, vol.99, pp.2293-352, 1999.

Z. X. Yang, X. Cheng, Y. Jia, K. Geng, R. Wu et al., Tracking of mesenchymal stem cells labeled with gadolinium diethylenetriamine pentaacetic acid by 7T magnetic resonance imaging in a model of cerebral ischemia, Mol Med Rep, vol.11, pp.954-60, 2014.

R. Weissleder, H. C. Cheng, A. Bogdanova, and A. Bogdanov, Magnetically labeled cells can be detected by MR imaging, J Magn Reson Imaging, vol.7, pp.258-63

J. C. Sipe, M. Filippi, G. Martino, R. Furlan, M. A. Rocca et al., Method for intracellular magnetic labeling of human mononuclear cells using approved iron contrast agents, Magn Reson Imaging, vol.17, pp.1521-1524, 1999.

L. M. Foley, T. K. Hitchens, C. Ho, K. L. Janesko-feldman, J. A. Melick et al., Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury, J Neurotrauma, vol.26, pp.1509-1528, 2009.

P. Smirnov, Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy, Methods Mol Biol, vol.512, pp.333-53, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00527552

K. M. Ward, A. H. Aletras, and R. S. Balaban, A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST), J Magn Reson, vol.143, pp.79-87, 2000.

P. M. Winter, Magnetic resonance chemical exchange saturation transfer imaging and nanotechnology, Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.4, pp.389-98, 2012.

M. N. Bouchlaka, K. D. Ludwig, J. W. Gordon, M. P. Kutz, B. P. Bednarz et al., 19F-MRI for monitoring human NK cells in vivo, Oncoimmunology, vol.5, pp.1-12, 2016.

A. R. Penheiter, S. J. Russell, and S. K. Carlson, The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies, Curr Gene Ther, vol.12, pp.33-47, 2012.

M. Jauregui-osoro, K. Sunassee, A. J. Weeks, D. J. Berry, R. L. Paul et al., Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter, Eur J Nucl Med Mol Imaging, vol.37, pp.2108-2124, 2010.

H. Youn, J. M. Jeong, and J. Chung, A new PET probe, (18)F-tetrafluoroborate, for the sodium/iodide symporter: possible impacts on nuclear medicine

, Eur J Nucl Med Mol Imaging, vol.37, pp.2105-2112, 2010.

S. Diocou, A. Volpe, M. Jauregui-osoro, M. Boudjemeline, K. Chuamsaamarkkee et al., 18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model, vol.7, p.946, 2017.

S. B. Lee, H. W. Lee, H. Lee, Y. H. Jeon, S. Lee et al., Tracking dendritic cell migration into lymph nodes by using a novel PET probe 18F-tetrafluoroborate for sodium/iodide symporter, EJNMMI Res, vol.7, p.32, 2017.

S. A. Collins, K. Hiraoka, A. Inagaki, N. Kasahara, and M. Tangney, PET imaging for gene and cell therapy, Curr Gene Ther, vol.12, pp.20-32, 2012.

M. Thunemann, B. F. Schörg, S. Feil, Y. Lin, J. Voelkl et al., Cre/loxassisted non-invasive in vivo tracking of specific cell populations by positron emission tomography, Nat Commun, vol.8, p.444, 2017.

Y. Pan, J. Lv, D. Pan, Y. Xu, M. Yang et al., Evaluating the utility of human glucagon-like peptide 1 receptor gene as a novel radionuclide reporter gene: a promising molecular imaging tool, Appl Microbiol Biotechnol, vol.103, pp.1311-1335, 2019.

Z. Wu, I. Todorov, L. Li, J. R. Bading, Z. Li et al., In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys 40 -exendin-4 by targeting GLP-1 receptor, Bioconjug Chem, vol.22, pp.1587-94, 2011.

D. Haralampieva, T. Betzel, I. Dinulovic, S. Salemi, M. Stoelting et al., Noninvasive PET imaging and tracking of engineered human muscle precursor cells for skeletal muscle tissue engineering, J Nucl Med, vol.57, pp.1467-73, 2016.

V. Schonitzer, F. Haasters, S. Kasbauer, V. Ulrich, E. Mille et al., In vivo mesenchymal stem cell tracking with PET using the dopamine type 2 receptor and 18F-fallypride, J Nucl Med, vol.55, pp.1342-1349, 2014.

R. Guo, Q. Li, F. Yang, X. Hu, J. Jiao et al., In vivo MR imaging of dual MRI reporter genes and deltex-1 gene-modified human mesenchymal stem cells in the treatment of closed penile fracture, Mol Imaging Biol, vol.20, pp.417-444, 2018.

H. S. Kim, J. Woo, J. H. Lee, H. J. Joo, Y. S. Choi et al., In vivo tracking of dendritic cell using MRI reporter gene, ferritin, PLoS ONE, vol.10, pp.1-13, 2015.

X. He, J. Cai, B. Liu, Y. Zhong, and Y. Qin, Cellular magnetic resonance imaging contrast generated by the ferritin heavy chain genetic reporter under the control of a Tet-On switch, Stem Cell Res Ther, vol.6, p.207, 2015.

B. B. Bartelle, M. D. Mana, G. A. Suero-abreu, J. J. Rodriguez, and D. H. Turnbull, Engineering an effective Mn-binding MRI reporter protein by subcellular targeting, Magn Reson Med, vol.74, pp.1750-1757, 2015.

C. M. Lewis, S. A. Graves, R. Hernandez, H. F. Valdovinos, T. E. Barnhart et al., 52Mn production for PET/MRI tracking of human stem cells expressing divalent metal transporter 1 (DMT1), Theranostics, vol.5, pp.227-266, 2015.

J. E. Kim, S. Kalimuthu, and B. Ahn, In vivo cell tracking with bioluminescence imaging, Nucl Med Mol Imaging, vol.49, pp.3-10, 2015.

P. Xie, X. Hu, D. Li, S. Xie, Z. Zhou et al., Bioluminescence imaging of transplanted mesenchymal stem cells by overexpression of hepatocyte nuclear factor4?: tracking biodistribution and survival, Mol Imaging Biol, vol.21, pp.44-53, 2019.

M. F. Muñoz, S. Argüelles, M. Guzman-chozas, R. Guillén-sanz, J. M. Franco et al., Cell tracking, survival, and differentiation capacity of adipose-derived stem cells after engraftment in rat tissue, J Cell Physiol, vol.233, pp.6317-6345, 2018.

C. Qin, K. Cheng, K. Chen, X. Hu, Y. Liu et al., Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging, Sci Rep, vol.3, p.1490, 2013.

P. G. Sanches, S. Peters, R. Rossin, E. L. Kaijzel, I. Que et al., Bone metastasis imaging with SPECT/CT/MRI: a preclinical toolbox for therapy studies, Bone, vol.75, pp.62-71, 2015.

B. Kocher and D. Piwnica-worms, Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo, Cancer Discov, vol.3, pp.616-645, 2013.

M. Tomura, A. Hata, S. Matsuoka, F. Shand, Y. Nakanishi et al., Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes, Sci Rep, vol.4, p.6030, 2015.

S. Kang, S. Lee, J. H. Na, H. I. Yoon, D. Lee et al., Cell labeling and tracking method without distorted signals by phagocytosis of macrophages, Theranostics, vol.4, pp.420-451, 2014.

S. Y. Lee, S. Lee, J. Lee, J. Y. Yhee, H. I. Yoon et al., Non-invasive stem cell tracking in hindlimb ischemia animal model using bio-orthogonal copperfree click chemistry, Biochem Biophys Res Commun, vol.479, pp.779-86, 2016.

S. Lee, H. I. Yoon, J. H. Na, S. Jeon, S. Lim et al., In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface, Biomaterials, vol.139, pp.12-29, 2017.

C. Bailly, S. Gouard, M. Lacombe, P. Saëc, B. Chalopin et al., Comparison of Immuno-PET of CD138 and PET imaging with 64CuCl2 and 18F-FDG in a preclinical syngeneic model of multiple myeloma, Oncotarget, vol.9, pp.9061-72, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01677118

M. N. Mccracken, R. Tavaré, O. N. Witte, and A. M. Wu, Advances in PET detection of the antitumor T cell response, Adv Immunol, vol.131, pp.187-231, 2016.

B. Vera, D. R. Smith, C. C. Bixby, L. M. Glatt, D. M. Dunn et al., Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors, PLoS ONE, vol.13, p.193832, 2018.

K. E. Mayer, S. Mall, N. Yusufi, D. Gosmann, K. Steiger et al., T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target, Theranostics, vol.8, pp.6070-87, 2018.

M. Rashidian, J. R. Ingram, M. Dougan, A. Dongre, K. A. Whang et al., Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells, J Exp Med, vol.214, pp.2243-55, 2017.

D. S. Abou, T. Ku, and P. M. Smith-jones, In vivo biodistribution and accumulation of 89Zr in mice. HHS public access, Nucl Med Biol, vol.3812, pp.675-81, 2011.

C. Bailly, C. Bodet-milin, C. Rousseau, A. Faivre-chauvet, F. Kraeber-bodéré et al., Pretargeting for imaging and therapy in oncological nuclear medicine, EJNMMI Radiopharm Chem, vol.2, p.6, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01819175

H. Honarvar, K. Westerlund, M. Altai, M. Sandström, A. Orlova et al., Feasibility of affibody molecule-based PNA-mediated radionuclide pretargeting of malignant tumors, Theranostics, vol.6, pp.93-103, 2016.

R. Rossin, R. Verkerk, P. Van-den-bosch, S. M. Vulders, R. Verel et al., In vivo chemistry for pretargeted tumor imaging in live mice, Angew Chemie Int Ed, vol.49, pp.3375-3383, 2010.

X. Zhang, B. Wang, N. Zhao, Z. Tian, Y. Dai et al., Improved tumor targeting and longer retention time of NIR fluorescent probes using bioorthogonal chemistry, Theranostics, vol.7, p.20912, 2017.

H. Chen, L. Wang, Q. Yu, W. Qian, D. Tiwari et al., Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer, Int J Nanomed, vol.8, pp.3781-94, 2013.

C. Alric, K. Hervé-aubert, N. Aubrey, S. Melouk, L. Lajoie et al., Targeting HER2-breast tumors with scFv-decorated bimodal nanoprobes, J Nanobiotechnol, vol.16, p.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808604

Y. Li, P. B. Soni, L. Liu, X. Zhang, D. C. Liotta et al., Synthesis of fluorescent nucleoside analogs as probes for 2 ? -deoxyribonucleoside kinases, Bioorg Med Chem Lett, vol.20, pp.841-844, 2010.

A. Bar-shir, L. Alon, M. J. Korrer, H. S. Lim, N. N. Yadav et al., Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy, Magn Reson Med, vol.79, pp.1010-1019, 2018.

J. H. Van-krieken, W. Oyen, I. De-vries, P. Verdijk, C. G. Figdor et al., Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy, Nat Biotechnol, vol.23, pp.1407-1420, 2005.

Y. W. Noh, Y. S. Jang, K. J. Ahn, Y. T. Lim, and B. H. Chung, Simultaneous in vivo tracking of dendritic cells and priming of an antigen-specific immune response, Biomaterials, vol.32, pp.6254-63, 2011.

B. Ahn, J. Sy, J. Lee, H. Jeong, S. B. Ahn et al., Radionuclideembedded gold nanoparticles for enhanced dendritic cell-based cancer immunotherapy, sensitive and quantitative tracking of dendritic cells with PET and Cerenkov luminescence, NPG Asia Mater, vol.8, p.281, 2016.

E. Sharif-paghaleh, K. Ratnasothy, K. Sunassee, R. Tavaré, R. Alhabbab et al., In vivo SPECT reporter gene imaging of regulatory T cells, PLoS ONE, vol.6, 2011.

Y. Q. Li, Y. Tang, R. Fu, Q. H. Meng, X. Zhou et al., Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats, Mol Med Rep, vol.12, pp.913-933, 2015.

J. Conniot, R. Gaspar, L. C. Silva, H. F. Florindo, J. M. Silva et al., Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking, Front Chem, vol.2, pp.1-27, 2014.

J. Bulte, . Daldrup-link, and . He, Clinical tracking of cell transfer and cell transplantation: trials and tribulations, Radiology, vol.289, pp.604-619, 2018.

F. Man, L. Lim, A. Volpe, A. Gabizon, H. Shmeeda et al., In vivo PET tracking of 89Zr-labeled V?9V?2 T cells to mouse xenograft breast tumors activated with liposomal alendronate, Mol Ther, vol.27, pp.219-248, 2019.

S. B. Lee, H. W. Lee, T. D. Singh, Y. Li, S. K. Kim et al., Visualization of macrophage recruitment to inflammation lesions using highly sensitive and stable radionuclide-embedded gold nanoparticles as a nuclear bio-imaging platform, Theranostics, vol.7, pp.926-960, 2017.

A. Signore, A. Annovazzi, R. Barone, E. Bonanno, D. 'alessandria et al., 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumor-infiltrating lymphocytes in melanoma lesions: a validation study, J Nucl Med, vol.45, pp.1647-52, 2004.

S. P. Patel and R. Kurzrock, PD-L1 expression as a predictive biomarker in cancer immunotherapy, Mol Cancer Ther, vol.14, pp.847-56, 2015.

A. Natarajan, A. T. Mayer, L. Xu, R. E. Reeves, J. Gano et al., Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes, Bioconjug Chem, vol.26, pp.2062-2071, 2015.

M. P. Lanfranca, J. Lazarus, X. Shao, H. Nathan, D. Magliano et al., Tracking macrophage infiltration in a mouse model of pancreatic cancer with the positron emission tomography tracer [11C]PBR28, J Surg Res, vol.232, pp.570-577, 2018.

A. Faraj, A. , S. Shaik, A. Pureza, M. A. Alnafea et al., Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI, PLoS ONE, vol.9, p.90829, 2014.

S. Valable, E. L. Barbier, M. Bernaudin, S. Roussel, C. Segebarth et al., In vivo MRI tracking of exogenous monocytes/macrophages targeting brain tumors in a rat model of glioma, Neuroimage, vol.40, pp.973-83, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00536177

C. Perez, A. Jukica, J. J. Listopad, K. Anders, A. A. Kühl et al., Permissive expansion and homing of adoptively transferred T cells in tumor-bearing hosts, Int J Cancer, vol.137, pp.359-71, 2015.

H. He, M. Kanada, C. H. Contag, V. Krishnan, B. T. Schaar et al., Imaging of tumor-associated macrophages in a transgenic mouse model of orthotopic ovarian cancer, Mol Imaging Biol, vol.19, pp.694-702, 2017.

R. Yang, S. Sarkar, V. W. Yong, and J. F. Dunn, In vivo MR imaging of tumorassociated macrophages: the next frontier in cancer imaging, Magn Reson Insights, vol.11, 2018.

R. L. Wahl, H. Jacene, Y. Kasamon, and M. A. Lodge, From RECIST to PERCIST: evolving Considerations for PET response criteria in solid tumors, 122S?50S, p.50, 2009.

S. Cammilleri, B. Labeille, A. Kelly, V. Isnardi, D. 'incan et al., 123I-BZA2 as a melanin-targeted radiotracer for the identification of melanoma metastases: results and perspectives of a multicenter phase III clinical trial, J Nucl Med, vol.55, pp.15-22, 2013.

G. Ren, Z. Liu, Z. Miao, H. Liu, M. Subbarayan et al., PET of malignant melanoma using 18F-labeled metallopeptides, J Nucl Med, vol.50, pp.1865-72, 2009.

S. T. Lee, I. Burvenich, and A. M. Scott, Novel target selection for nuclear medicine studies, Semin Nucl Med, vol.49, pp.357-68, 2019.

S. R. Verhoeff, M. M. Van-den-heuvel, C. Van-herpen, P. B. Aarntzen, E. Heskamp et al., Programmed cell death-1/ligand-1 PET imaging, PET Clin, vol.15, pp.35-43, 2019.

C. S. Hinrichs, S. Turcotte, J. R. Wunderlich, M. E. Dudley, K. Hogan et al., Phenotype and function of T cells infiltrating visceral metastases from gastrointestinal cancers and melanoma: implications for adoptive cell transfer therapy, J Immunol, vol.191, pp.2217-2242, 2013.

J. W. Seo, R. Tavaré, L. M. Mahakian, M. T. Silvestrini, S. Tam et al., CD8+ T-cell density imaging with 64Cu-labeled cys-diabody informs immunotherapy protocols, Clin Cancer Res, vol.24, pp.4976-87, 2018.

S. Markovic, F. Galli, V. J. Suman, W. K. Nevala, A. M. Paulsen et al., Non-invasive clinical visualization of tumor infiltrating lymphocytes in patients with metastatic melanoma undergoing immune checkpoint inhibitor therapy: a pilot study, J Clin Oncol, vol.35, p.3034, 2017.

S. Narang, D. Kim, S. Aithala, A. B. Heimberger, S. Ahmed et al., Tumor image-derived texture features are associated with CD3 Tcell infiltration status in glioblastoma, Oncotarget, vol.8, pp.101244-54, 2017.

R. Sun, E. J. Limkin, M. Vakalopoulou, L. Dercle, S. Champiat et al., A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study, Lancet Oncol, vol.19, issue.18, pp.30413-30416, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01958243

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, Tumour-associated macrophages as treatment targets in oncology, Nat Rev Clin Oncol, vol.14, pp.399-416, 2017.

M. Eisenblatter, J. Ehrchen, G. Varga, C. Sunderkotter, W. Heindel et al., In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages, J Nucl Med, vol.50, pp.1676-82, 2009.

S. Terry, T. K. Nayak, W. J. Oyen, C. Klein, P. Laverman et al., Monitoring therapy response of experimental arthritis with radiolabeled tracers targeting fibroblasts, macrophages, or integrin v 3, J Nucl Med, vol.57, pp.467-72, 2015.

M. Nahrendorf, H. Zhang, S. Hembrador, P. Panizzi, D. E. Sosnovik et al., Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis, Circulation, vol.117, pp.379-87, 2008.

S. Terry, O. C. Boerman, D. Gerrits, G. M. Franssen, J. M. Metselaar et al., 111In-anti-F4/80-A3-1 antibody: a novel tracer to image macrophages, Eur J Nucl Med Mol Imaging, vol.42, pp.1430-1438, 2015.

R. Yang, S. Sarkar, D. J. Korchinski, Y. Wu, V. W. Yong et al., MRI monitoring of monocytes to detect immune stimulating treatment response in brain tumor, Neuro Oncol, vol.19, p.180, 2016.

E. Aarntzen, M. Srinivas, C. G. Radu, C. Punt, O. C. Boerman et al., In vivo imaging of therapy-induced anti-cancer immune responses in humans, Cell Mol Life Sci, vol.70, pp.2237-57, 2013.

C. G. Radu, C. J. Shu, E. Nair-gill, S. M. Shelly, J. R. Barrio et al., Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog, Nat Med, vol.14, pp.783-791, 2008.

R. Chen, X. Zhou, J. Liu, and G. Huang, Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer, Eur J Nucl Med Mol Imaging, vol.11, pp.12270-12277, 2019.

D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat Rev Cancer, vol.12, pp.252-64, 2012.

S. C. Katz, V. Pillarisetty, Z. M. Bamboat, J. Shia, C. Hedvat et al., T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases, Ann Surg Oncol, vol.16, pp.2524-2554, 2009.

E. B. Ehlerding, C. G. England, R. L. Majewski, H. F. Valdovinos, D. Jiang et al., ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer, Mol Pharm, vol.14, pp.1782-1791, 2017.

K. Buder-bakhaya and J. C. Hassel, Biomarkers for clinical benefit of immune checkpoint inhibitor treatment-a review from the melanoma perspective and beyond, Front Immunol, vol.9, p.1474, 2018.

M. Kikuchi, D. A. Clump, R. M. Srivastava, L. Sun, D. Zeng et al., Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma, Oncoimmunology, vol.6, pp.1-13, 2017.

K. Broos, Q. Lecocq, G. Raes, N. Devoogdt, M. Keyaerts et al., Noninvasive imaging of the PD-1: PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy, Theranostics, vol.8, pp.3559-70, 2018.

M. Faure, P. Rochigneux, D. Olive, S. Taix, I. Brenot-rossi et al., Hyperprogressive disease in anorectal melanoma treated by PD-1 inhibitors, Front Immunol, vol.9, p.797, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02143544

F. Bensch, E. L. Van-der-veen, M. N. Lub-de-hooge, A. Jorritsma-smit, R. Boellaard et al., 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer, Nat Med, vol.24, pp.1852-1860, 2018.

H. M. Gibson, B. N. Mcknight, A. Malysa, G. Dyson, W. N. Wiesend et al., IFNg PET imaging as a predictive tool for monitoring response to tumor immunotherapy, Cancer Res, vol.78, pp.5706-5723, 2018.

M. Kircher, P. Herhaus, M. Schottelius, A. K. Buck, R. A. Werner et al., CXCR4-directed theranostics in oncology and inflammation, Ann Nucl Med, vol.32, pp.503-514, 2018.

J. E. Streeter, R. C. Gessner, J. Tsuruta, S. Feingold, and P. A. Dayton, Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography, Mol Imaging, vol.10, pp.460-468, 2011.

W. F. Sui, X. Chen, Z. K. Peng, J. Ye, and J. T. Wu, The diagnosis of metastatic axillary lymph nodes of breast cancer by diffusion weighted imaging: a meta-analysis and systematic review, World J Surg Oncol, vol.14, p.155, 2016.

C. M. Griessinger, R. Kehlbach, D. Bukala, S. Wiehr, R. Bantleon et al., In vivo tracking of Th1 cells by PET reveals quantitative and temporal distribution and specific homing in lymphatic tissue, J Nucl Med, vol.55, pp.301-308, 2014.

L. Sancey, V. Ardisson, L. M. Riou, M. Ahmadi, D. Marti-batlle et al., In vivo imaging of tumour angiogenesis in mice with the ?v?3 integrintargeted tracer 99mTc-RAFT-RGD, Eur J Nucl Med Mol Imaging, vol.34, pp.2037-2084, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00176669

J. Furukawa, T. Claron, M. Boturyn, D. Coll, J. Fukumura et al., Positron emission tomography imaging of tumor angiogenesis and monitoring of antiangiogenic efficacy using the novel tetrameric peptide probe 64Cu-cyclam-RAFT-c(-RGDfK-)4, Angiogenesis, vol.15, pp.569-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01654932

C. J. Galbán, B. A. Hoff, T. L. Chenevert, and B. D. Ross, Diffusion MRI in early cancer therapeutic response assessment, NMR Biomed, vol.30, p.3458, 2017.

W. Pham, J. Xie, and J. C. Gore, Tracking the migration of dendritic cells by in vivo optical imaging, Neoplasia, vol.9, pp.1130-1137, 2007.

M. Muccioli, M. Pate, O. Omosebi, and F. Benencia, Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies, J Vis Exp, p.2785, 2011.

C. M. Long, H. Van-laarhoven, J. Bulte, and H. I. Levitsky, Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes, Cancer Res, vol.69, pp.3180-3187, 2009.

K. O. Asiedu, S. Koyasu, L. P. Szajek, P. L. Choyke, and N. Sato, Bone marrow cell trafficking analyzed by 89 Zr-oxine positron emission tomography in a murine transplantation model, Clin Cancer Res, vol.23, pp.2759-68, 2017.

K. O. Asiedu, M. Ferdousi, P. T. Ton, S. S. Adler, P. L. Choyke et al., Bone marrow cell homing to sites of acute tibial fracture: 89Zr-oxine cell labeling with positron emission tomographic imaging in a mouse model, EJNMMI Res, vol.8, p.109, 2018.

B. Kanwar, D. W. Gao, A. B. Hwang, J. P. Grenert, S. P. Williams et al., In vivo imaging of mucosal CD4+ T cells using single photon emission computed tomography in a murine model of colitis, J Immunol Methods, vol.329, pp.21-30, 2008.

M. Srinivas, M. S. Turner, J. M. Janjic, P. A. Morel, D. H. Laidlaw et al., In vivo cytometry of antigen-specific T cells using 19F MRI, Magn Reson Med, vol.62, pp.747-53, 2009.

M. Tremblay, C. Davis, C. V. Bowen, O. Stanley, C. Parsons et al., Using MRI cell tracking to monitor immune cell recruitment in response to a peptide-based cancer vaccine, Magn Reson Med, vol.80, pp.304-320, 2018.

M. Srinivas, E. Aarntzen, J. Bulte, W. J. Oyen, A. Heerschap et al., Imaging of cellular therapies, Adv Drug Deliv Rev, vol.62, pp.1080-93, 2010.

P. Verdijk, E. Aarntzen, W. J. Lesterhuis, A. Boullart, E. Kok et al., Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients, Clin Cancer Res, vol.15, pp.2531-2571, 2009.

P. Laverman, I. De-vries, N. M. Scharenborg, A. De-boer, M. Broekema et al., Development of 111In-labeled tumor-associated antigen peptides for monitoring dendritic-cell-based vaccination, Nucl Med Biol, vol.33, pp.453-461, 2006.

N. Emami-shahri and S. Papa, Dynamic imaging for CAR-T-cell therapy, Biochem Soc Trans, vol.44, pp.386-90, 2016.

P. Bhatnagar, M. Alauddin, J. A. Bankson, D. Kirui, P. Seifi et al., Tumor lysing genetically engineered T cells loaded with multi-modal imaging agents, Sci Rep, vol.4, p.4502, 2014.

F. Chapelin, S. Gao, H. Okada, T. G. Weber, K. Messer et al., Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Sci Rep, vol.7, p.17748, 2017.

S. Mall, N. Yusufi, R. Wagner, R. Klar, H. Bianchi et al., Immuno-PET imaging of engineered human T cells in tumors, Cancer Res, vol.76, pp.4113-4136, 2016.

S. Wang, D. M. O'rourke, S. Chawla, G. Verma, M. P. Nasrallah et al., Multiparametric magnetic resonance imaging in the assessment of anti-EGFRvIII chimeric antigen receptor T cell therapy in patients with recurrent glioblastoma, Br J Cancer, vol.120, pp.54-60, 2019.

T. Uong, K. H. Lee, S. J. Ahn, K. W. Kim, J. J. Min et al., Real-time tracking of ex vivo-expanded natural killer cells toward human triple-negative breast cancers, Front Immunol, vol.9, pp.1-14, 2018.

V. Garikipati, S. Jadhav, L. Pal, P. Prakash, M. Dikshit et al., Mesenchymal stem cells from fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats, PLoS ONE, vol.9, pp.1-10, 2014.

R. Schubert, J. Sann, J. T. Frueh, E. Ullrich, H. Geiger et al., Tracking of adipose-derived mesenchymal stromal/stem cells in a model of cisplatininduced acute kidney injury: comparison of bioluminescence imaging vs. qRT-PCR, Int J Mol Sci, vol.19, pp.1-12, 2018.

S. Kalimuthu, L. Zhu, J. M. Oh, P. Gangadaran, H. W. Lee et al., Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin, Int J Med Sci, vol.15, pp.1051-61, 2018.

L. Scarfe, A. Taylor, J. Sharkey, R. Harwood, M. Barrow et al., Non-invasive imaging reveals conditions that impact distribution and persistence of cells after in vivo administration, bioRxiv [Preprint], 2018.

C. J. Palestro, C. Love, and K. K. Bhargava, Labeled leukocyte imaging: current status and future directions, Q J Nucl Med Mol Imaging, vol.53, pp.105-128, 2009.