F. Portaels, M. T. Silva, and W. M. Meyers, Buruli ulcer, Clin. Dermatol, vol.27, pp.291-305, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00540470

E. Marion, O. R. Song, T. Christophe, J. Babonneau, D. Fenistein et al., Mycobacterial toxin induces analgesia in buruli ulcer by targeting the angiotensin pathways, vol.157, pp.1565-1576, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117565

C. Demangel, T. P. Stinear, and S. T. Cole, Buruli ulcer: Reductive evolution enhances pathogenicity of Mycobacterium ulcerans, Nat. Rev. Microbiol, vol.7, pp.50-60, 2009.

L. Marsollier, J. Aubry, E. Coutanceau, J. P. André, P. L. Small et al., Colonization of the salivary glands of Naucoris cimicoides by Mycobacterium ulcerans requires host plasmatocytes and a macrolide toxin, mycolactone. Cell. Microbiol, vol.7, pp.935-943, 2005.

L. Mosi, N. K. Mutoji, F. A. Basile, R. Donnell, K. L. Jackson et al., Mycobacterium ulcerans causes minimal pathogenesis and colonization in medaka (Oryzias latipes): An experimental fish model of disease transmission, Microbes Infect, vol.14, pp.719-729, 2012.

R. E. Simmonds, F. V. Lali, T. Smallie, P. L. Small, and B. M. Foxwell, Mycolactone inhibits monocyte cytokine production by a posttranscriptional mechanism, J. Immunol, vol.182, pp.2194-2202, 2009.

A. G. Fraga, A. Cruz, T. G. Martins, E. Torrado, M. Saraiva et al., Mycobacterium ulcerans triggers T-cell immunity followed by local and regional but not systemic immunosuppression, Infect. Immun, vol.79, pp.421-430, 2010.

E. Marion, U. Jarry, C. Cano, C. Savary, C. Beauvillain et al., FVB/N mice spontaneously heal ulcerative lesions induced by Mycobacterium ulcerans and switch M. ulcerans into a low mycolactone producer, J. Immunol, vol.196, pp.2690-2698, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01284881

K. M. Dobos, E. A. Spotts, B. J. Marston, C. R. Horsburgh, and C. H. King, Serologic response to culture filtrate antigens of Mycobacterium ulcerans during Buruli ulcer disease, Emerg. Infect. Dis, vol.6, pp.158-164, 2000.

M. T. Ruf, C. Steffen, M. Bolz, P. Schmid, and G. Pluschke, Infiltrating leukocytes surround early Buruli ulcer lesions, but are unable to reach the mycolactone producing mycobacteria, Virulence, vol.8, pp.1918-1926, 2017.

Q. B. Vincent, M. F. Ardant, A. Adeye, A. Goundote, J. P. Saint-andré et al., Clinical epidemiology of laboratory-confirmed Buruli ulcer in Benin: A cohort study, Lancet Glob. Health, vol.2, pp.422-430, 2014.

D. M. Phanzu, P. Suykerbuyk, D. B. Imposo, P. N. Lukanu, J. B. Minuku et al., Effect of a control project on clinical profiles and outcomes in buruli ulcer: A before/after study in, vol.5, p.1402, 2011.

A. C. Wadagni, Y. T. Barogui, R. C. Johnson, G. E. Sopoh, D. Affolabi et al., Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: A randomised controlled trial, Lancet Infect. Dis, vol.18, pp.650-656, 2018.

Y. Barogui, R. C. Johnson, T. S. Van-der-werf, G. Sopoh, A. Dossou et al., Functional limitations after surgical or antibiotic treatment for Buruli ulcer in Benin, Am. J. Trop. Med. Hyg, vol.81, pp.82-87, 2009.

E. Marion, A. Chauty, M. Kempf, Y. Le-corre, Y. Delneste et al., Clinical features of spontaneous partial healing during Mycobacterium ulcerans infection, Open Forum Infect. Dis, vol.3, p.13, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01281366

D. P. O'brien, A. Murrie, P. Meggyesy, J. Priestley, A. Rajcoomar et al., Spontaneous healing of Mycobacterium ulcerans disease in Australian patients, PLOS Negl. Trop. Dis, vol.13, p.7178, 2019.

/. Raaax7781 and . Emp,

A. Benard, C. Sala, and G. Pluschke, Mycobacterium ulcerans mouse model refinement for pre-clinical profiling of vaccine candidates, PLOS ONE, vol.11, p.167059, 2016.

I. U. Egbuniwe, S. N. Karagiannis, F. O. Nestle, and K. E. Lacy, Revisiting the role of B cells in skin immune surveillance, Trends Immunol, vol.36, pp.102-111, 2015.

S. A. Geherin, S. R. Fintushel, M. H. Lee, R. P. Wilson, R. T. Patel et al., The skin, a novel niche for recirculating B cells, J. Immunol, vol.188, pp.6027-6035, 2012.

S. A. Geherin, M. H. Lee, R. P. Wilson, and G. F. Debes, Ovine skin-recirculating ?? T cells express IFN-? and IL-17 and exit tissue independently of CCR7, Vet. Immunol. Immunopathol, vol.155, pp.87-97, 2013.

R. P. Wilson, S. E. Mcgettigan, V. D. Dang, A. Kumar, M. P. Cancro et al., IgM plasma cells reside in healthy skin and accumulate with chronic inflammation, J. Invest. Dermatol, vol.139, pp.2477-2487, 2019.

L. Marsollier, P. Brodin, M. Jackson, J. Korduláková, P. Tafelmeyer et al., Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis, vol.3, p.62, 2007.

C. A. Janeway, P. Travers, M. Walport, and M. J. Shlomchik, The major histocompatibility complex and its functions, Immunobiology: The Immune System in Health and Disease (Garland Science, 2001.

R. M. Martin, J. L. Brady, and A. M. Lew, The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice, J. Immunol. Methods, vol.212, pp.187-192, 1998.

B. S. Hall, K. Hill, M. Mckenna, J. Ogbechi, S. High et al., The pathogenic mechanism of the Mycobacterium ulcerans virulence factor, mycolactone, depends on blockade of protein translocation into the ER, PLOS Pathog, vol.10, p.1004061, 2014.

J. Tellier and S. L. Nutt, Standing out from the crowd: How to identify plasma cells, Eur. J. Immunol, vol.47, pp.1276-1279, 2017.

E. Minutilli, G. Orefici, M. Pardini, F. Giannoni, L. M. Muscardin et al., Squamous cell carcinoma secondary to buruli ulcer, Dermatol. Surg, vol.33, pp.872-875, 2007.

K. Kassi, K. Kouame, W. Allen, L. A. Kouassi, W. Ance et al., Squamous cell carcinoma secondary to Buruli ulcer: A clinical case report in a young girl, Bacteriol. Virusol. Parazitol. Epidemiol, vol.55, pp.25-28, 2010.

M. Bolz, N. Ruggli, N. Borel, G. Pluschke, and M. T. Ruf, Local cellular immune responses and pathogenesis of Buruli ulcer lesions in the experimental Mycobacterium Ulcerans pig infection model, PLOS Negl. Trop. Dis, vol.10, p.4678, 2016.

B. Geiger, J. Wenzel, M. Hantschke, I. Haase, S. Ständer et al., Resolving lesions in human cutaneous leishmaniasis predominantly harbour chemokine receptor CXCR3-positive T helper 1/T cytotoxic type 1 cells, Br. J. Dermatol, vol.162, pp.870-874, 2010.

D. Simon, S. Hösli, G. Kostylina, N. Yawalkar, and H. U. Simon, Anti-CD20 (rituximab) treatment improves atopic eczema, J. Allergy Clin. Immunol, vol.121, pp.122-128, 2008.

K. Yanaba, M. Kamata, N. Ishiura, S. Shibata, Y. Asano et al., Regulatory B cells suppress imiquimod-induced, psoriasis-like skin inflammation, J. Leukoc. Biol, vol.94, pp.563-573, 2013.

N. Nishio, S. Ito, H. Suzuki, and K. Isobe, Antibodies to wounded tissue enhance cutaneous wound healing, Immunology, vol.128, pp.369-380, 2009.

N. Abboud, S. K. Chow, C. Saylor, A. Janda, J. V. Ravetch et al., A requirement for Fc?R in antibody-mediated bacterial toxin neutralization, J. Exp. Med, vol.207, pp.2395-2405, 2010.

P. L. De-gentile, C. Mahaza, F. Rolland, B. Carbonnelle, J. L. Verret et al.,

, Bull. Soc. Pathol. Exot, vol.85, pp.212-214, 1992.

K. M. George, D. Chatterjee, G. Gunawardana, D. Welty, J. Hayman et al., Mycolactone: A polyketide toxin from Mycobacterium ulcerans required for virulence, vol.283, pp.854-857, 1999.

E. Marion, S. Prado, C. Cano, J. Babonneau, S. Ghamrawi et al., Photodegradation of the Mycobacterium ulcerans toxin, mycolactones: Considerations for handling and storage, PLOS ONE, vol.7, p.33600, 2012.

S. A. Geherin, D. Gómez, R. A. Glabman, G. Ruthel, A. Hamann et al., IL-10 + innate-like B cells are part of the skin immune system and require ?4?1 integrin to migrate between the peritoneum and inflamed skin, J. Immunol, vol.196, pp.2514-2525, 2016.

K. Pracht, J. Meinzinger, P. Daum, S. R. Schulz, D. Reimer et al., A new staining protocol for detection of murine antibody-secreting plasma cell subsets by flow cytometry, Eur. J. Immunol, vol.47, pp.1389-1392, 2017.

L. J. , A. A. , L. A. , A. A. , E. et al., acknowledge support from the Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases (grant no. ANR-10-LABX-62-IBEID) and the ANR under the "Investments for the Future" program (grant no. ANR-10-IAHU-01). A.A. acknowledges support from the Fondation pour la Recherche Médicale (grant no. DMI20091117308), Acknowledgments: We thank all members of the SCAHU platform and Lore Dubesset for technical assistance. Funding: This work was