E. Dardiotis, A. M. Aloizou, V. Siokas, G. P. Patrinos, G. Deretzi et al., The role of MicroRNAs in patients with amyotrophic lateral sclerosis, J Mol Neurosci, 2018.

P. Langfelder, J. P. Cantle, D. Chatzopoulou, N. Wang, F. Gao et al., Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice, Nat Neurosci, vol.19, issue.4, pp.623-656, 2016.

P. Langfelder, F. Gao, N. Wang, D. Howland, S. Kwak et al., MicroRNA signatures of endogenous Huntingtin CAG repeat expansion in mice, PLoS One, vol.13, issue.1, p.190550, 2018.

S. Pichler, W. Gu, D. Hartl, G. Gasparoni, P. Leidinger et al., The miRNome of Alzheimer's disease: consistent downregulation of the miR-132/212 cluster, Neurobiol Aging, vol.50, p.110, 2017.

S. Ham, T. K. Kim, S. Lee, Y. P. Tang, and H. I. Im, MicroRNA profiling in aging brain of PSEN1/PSEN2 double knockout mice, Mol Neurobiol, vol.55, issue.6, pp.5232-5274, 2018.

R. Johnson, C. Zuccato, N. D. Belyaev, D. J. Guest, E. Cattaneo et al., A microRNA-based gene dysregulation pathway in Huntington's disease, Neurobiol Dis, vol.29, issue.3, pp.438-483, 2008.

A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson, The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease, J Neurosci, vol.28, issue.53, pp.14341-14347, 2008.

A. Jovicic, Z. Jolissaint, J. F. Moser, R. , S. Santos et al., MicroRNA-22 (miR-22) overexpression is neuroprotective via general antiapoptotic effects and may also target specific Huntington's disease-related mechanisms, PLoS One, vol.8, issue.1, p.54222, 2013.

M. Menor, T. Ching, X. Zhu, D. Garmire, and L. X. Garmire, mirMark: a site-level and UTR-level classifier for miRNA target prediction, Genome Biol, vol.15, issue.10, p.500, 2014.

X. Fan and L. Kurgan, Comprehensive overview and assessment of computational prediction of microRNA targets in animals, Brief Bioinform, vol.16, issue.5, pp.780-94, 2015.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, issue.1, pp.15-20, 2005.

D. Betel, A. Koppal, P. Agius, C. Sander, and C. Leslie, Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites, Genome Biol, vol.11, issue.8, p.90, 2010.

J. Ding, X. Li, and H. Hu, TarPmiR: a new approach for microRNA target site prediction, Bioinformatics, vol.32, issue.18, pp.2768-75, 2016.

S. Bandyopadhyay and R. Mitra, TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples, Bioinformatics, vol.25, issue.20, pp.2625-2656, 2009.

M. Sturm, M. Hackenberg, D. Langenberger, and D. Frishman, TargetSpy: a supervised machine learning approach for microRNA target prediction, BMC Bioinformatics, vol.11, p.292, 2010.

M. E. Rahman, R. Islam, S. Islam, S. I. Mondal, and M. R. Amin, MiRANN: a reliable approach for improved classification of precursor microRNA using artificial neural network model, Genomics, vol.99, issue.4, pp.189-94, 2012.

M. Wen, P. Cong, Z. Zhang, H. Lu, and T. Li, DeepMirTar: a deep-learning approach for predicting human miRNA targets, Bioinformatics, vol.34, issue.22, pp.3781-3788, 2018.

J. A. Davis, S. J. Saunders, M. Mann, and R. Backofen, Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data, Nucleic Acids Res, vol.45, issue.15, pp.8745-57, 2017.

J. C. Huang, Q. D. Morris, and B. J. Frey, Bayesian inference of MicroRNA targets from sequence and expression data, J Comput Biol, vol.14, issue.5, pp.550-63, 2007.

T. D. Le, L. Liu, A. Tsykin, G. J. Goodall, B. Liu et al., Inferring microRNA-mRNA causal regulatory relationships from expression data, Bioinformatics, vol.29, issue.6, pp.765-71, 2013.

J. Zhang, T. D. Le, L. Liu, B. Liu, J. He et al., Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data, J Biomed Inform, vol.52, pp.438-485, 2014.

C. Ovando-vazquez, D. Lepe-soltero, and C. Abreu-goodger, Improving microRNA target prediction with gene expression profiles, BMC Genomics, vol.17, p.364, 2016.

H. Kang, H. Ahn, J. K. Oh, M. Kim, and S. , mirTime: identifying condition-specific targets of MicroRNA in time-series transcript data using Gaussian process model and spherical vector clustering, Bioinformatics, 2019.

X. Peng, Y. Li, K. A. Walters, E. R. Rosenzweig, S. L. Lederer et al., Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers, BMC Genomics, vol.10, p.373, 2009.

A. Altmann, L. Tolosi, O. Sander, and T. Lengauer, Permutation importance: a corrected feature importance measure, Bioinformatics, vol.26, issue.10, pp.1340-1347, 2010.

P. Langfelder and S. Horvath, Eigengene networks for studying the relationships between co-expression modules, BMC Syst Biol, vol.1, p.54, 2007.

S. Horvath and J. Dong, Geometric interpretation of gene coexpression network analysis, PLoS Comput Biol, vol.4, issue.8, p.1000117, 2008.

G. Van-peer, D. Paepe, A. Stock, M. Anckaert, J. Volders et al., miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure, Nucleic Acids Res, vol.45, issue.7, p.51, 2017.

M. R. Mendoza, G. C. Da-fonseca, G. Loss-morais, R. Alves, R. Margis et al., RFMirTarget: predicting human microRNA target genes with a random forest classifier, PLoS One, vol.8, issue.7, p.70153, 2013.

S. Griffiths-jones, H. K. Saini, S. Van-dongen, and A. J. Enright, miRBase: tools for microRNA genomics, Nucleic Acids Res, vol.36, pp.154-162, 2008.

N. Wong and X. Wang, miRDB: an online resource for microRNA target prediction and functional annotations, Nucleic Acids Res, vol.43, pp.146-52, 2015.

S. Haider and R. Pal, Integrated analysis of transcriptomic and proteomic data, Curr Genomics, vol.14, issue.2, pp.91-110, 2013.

G. Chen, T. G. Gharib, C. C. Huang, J. M. Taylor, D. E. Misek et al., Discordant protein and mRNA expression in lung adenocarcinomas, Mol Cell Proteomics, vol.1, issue.4, pp.304-317, 2002.

L. E. Pascal, L. D. True, D. S. Campbell, E. W. Deutsch, M. Risk et al., Correlation of mRNA and protein levels: cell typespecific gene expression of cluster designation antigens in the prostate, BMC Genomics, vol.9, p.246, 2008.

A. Ghazalpour, B. Bennett, V. A. Petyuk, L. Orozco, R. Hagopian et al., Comparative analysis of proteome and transcriptome variation in mouse, PLoS Genet, vol.7, issue.6, p.1001393, 2011.

L. Yan and T. Zhu, Effects of rosuvastatin on neuronal apoptosis in cerebral ischemic stroke rats via Sirt1/NF-kappa B signaling pathway, Eur Rev Med Pharmacol Sci, vol.23, issue.12, pp.5449-55, 2019.

B. Xu, Y. Zhang, X. F. Du, J. Li, H. X. Zi et al., Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity, Cell Res, vol.27, issue.7, pp.882-97, 2017.

X. Dong and S. Cong, Bioinformatic analysis of microRNA expression in Huntington's disease, Mol Med Rep, vol.18, issue.3, pp.2857-65, 2018.

K. F. Hansen, K. Sakamoto, G. A. Wayman, S. Impey, and K. Obrietan, Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory, PLoS One, vol.5, issue.11, p.15497, 2010.

A. Lesiak, M. Zhu, H. Chen, S. M. Appleyard, S. Impey et al., The environmental neurotoxicant PCB 95 promotes synaptogenesis via ryanodine receptor-dependent miR132 upregulation, J Neurosci, vol.34, issue.3, pp.717-742, 2014.

C. Y. Chang, T. N. Lui, J. W. Lin, Y. L. Lin, C. H. Hsing et al., Roles of microRNA-1 in hypoxia-induced apoptotic insults to neuronal cells, Arch Toxicol, vol.90, issue.1, pp.191-202, 2016.

Y. Huang, J. Jiang, G. Zheng, J. Chen, H. Lu et al., miR-139-5p modulates cortical neuronal migration by targeting Lis1 in a rat model of focal cortical dysplasia, Int J Mol Med, vol.33, issue.6, pp.1407-1421, 2014.

J. Zhao, H. Wang, L. Dong, S. Sun, and L. Li, miRNA-20b inhibits cerebral ischemiainduced inflammation through targeting NLRP3, Int J Mol Med, vol.43, issue.3, pp.1167-78, 2019.

H. Xin, F. Wang, Y. Li, Q. E. Lu, W. L. Cheung et al., Secondary release of Exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with Exosomes harvested from MicroRNA 133b-overexpressing multipotent Mesenchymal stromal cells, Cell Transplant, vol.26, issue.2, pp.243-57, 2017.

X. C. Lu, J. Y. Zheng, L. J. Tang, B. S. Huang, K. Li et al., MiR-133b promotes neurite outgrowth by targeting RhoA expression, Cell Physiol Biochem, vol.35, issue.1, pp.246-58, 2015.

N. K. Liu, X. F. Wang, Q. B. Lu, and X. M. Xu, Altered microRNA expression following traumatic spinal cord injury, Exp Neurol, vol.219, issue.2, pp.424-433, 2009.

Y. M. Yu, K. M. Gibbs, J. Davila, N. Campbell, S. Sung et al., MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish, Eur J Neurosci, vol.33, issue.9, pp.1587-97, 2011.

H. Xin, Y. Li, Z. Liu, X. Wang, X. Shang et al., MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosomeenriched extracellular particles, Stem Cells, vol.31, issue.12, pp.2737-2783, 2013.

S. Haenisch, E. L. Von-ruden, H. Wahmkow, M. L. Rettenbeck, C. Michler et al., miRNA-187-3p-mediated regulation of the KCNK10/TREK-2 Potassium Channel in a rat epilepsy model, ACS Chem Neurosci, vol.7, issue.11, pp.1585-94, 2016.

X. Quan, L. Huang, Y. Yang, T. Ma, Z. Liu et al., Potential mechanism of Neurite outgrowth enhanced by electrical stimulation: involvement of MicroRNA-363-5p targeting DCLK1 expression in rat, Neurochem Res, vol.42, issue.2, pp.513-538, 2017.

T. Kobayashi, Y. Iwamoto, K. Takashima, A. Isomura, Y. Kosodo et al., Deubiquitinating enzymes regulate Hes1 stability and neuronal differentiation, FEBS J, vol.282, issue.13, pp.2411-2434, 2015.

S. C. Williams and J. L. Parsons, NTH1 Is a New Target for Ubiquitylation-Dependent Regulation by TRIM26 Required for the Cellular Response to Oxidative Stress, Mol Cell Biol, vol.38, issue.12, pp.616-633, 2018.

M. J. Edmonds, R. J. Carter, C. M. Nickson, S. C. Williams, and J. L. Parsons, Ubiquitylationdependent regulation of NEIL1 by mule and TRIM26 is required for the cellular DNA damage response, Nucleic Acids Res, vol.45, issue.2, pp.726-764, 2017.

A. Lotan, M. Fenckova, J. Bralten, A. Alttoa, L. Dixson et al., Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders, Front Neurosci, vol.8, p.331, 2014.

W. S. Chen, Y. J. Chen, Y. A. Huang, B. Y. Hsieh, H. C. Chiu et al., Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons, Sci Rep, vol.7, p.42297, 2017.

O. I. Kahn, N. Ha, M. A. Baird, M. W. Davidson, and P. W. Baas, TPX2 regulates neuronal morphology through kinesin-5 interaction, Cytoskeleton (Hoboken), vol.72, issue.7, pp.340-348, 2015.

M. Liu, Y. Liu, Y. Liu, G. Lupo, L. Lan et al., A role for Xvax2 in controlling proliferation of Xenopus ventral eye and brain progenitors, Dev Dyn, vol.237, issue.11, pp.3387-93, 2008.

S. Xu, L. Zhang, and L. Brodin, Overexpression of SNX7 reduces Abeta production by enhancing lysosomal degradation of APP, Biochem Biophys Res Commun, vol.495, issue.1, pp.12-21, 2018.

S. Erhardt, L. Schwieler, S. Imbeault, and G. Engberg, The kynurenine pathway in schizophrenia and bipolar disorder, Neuropharmacology, vol.112, pp.297-306, 2017.

K. I. Katayama, K. Hayashi, S. Inoue, K. Sakaguchi, and K. Nakajima, Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone, Brain Struct Funct, vol.222, issue.9, pp.4283-91, 2017.

M. T. Dinday, K. M. Girskis, S. Lee, S. C. Baraban, and R. F. Hunt, PAFAH1B1 haploinsufficiency disrupts GABA neurons and synaptic E/I balance in the dentate gyrus, Sci Rep, vol.7, issue.1, p.8269, 2017.

M. Shimamura, H. Nakagami, M. K. Osako, H. Kurinami, H. Koriyama et al., OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice, Proc Natl Acad Sci, vol.111, issue.22, pp.8191-8197, 2014.

Y. C. Wang, H. C. Juan, Y. H. Wong, W. C. Kuo, Y. L. Lu et al., Protogenin prevents premature apoptosis of rostral cephalic neural crest cells by activating the alpha5beta1-integrin, Cell Death Dis, vol.4, p.651, 2013.

Y. H. Wong, A. C. Lu, Y. C. Wang, H. C. Cheng, C. Chang et al., Protogenin defines a transition stage during embryonic neurogenesis and prevents precocious neuronal differentiation, J Neurosci, vol.30, issue.12, pp.4428-4467, 2010.

P. J. Hohensinner, C. Kaun, B. Ebenbauer, M. Hackl, S. Demyanets et al., Reduction of premature aging markers after gastric bypass surgery in morbidly obese patients, Obes Surg, vol.28, issue.9, pp.2804-2814, 2018.

S. Liu, J. Sun, and Q. Lan, TGF-beta-induced miR10a/b expression promotes human glioma cell migration by targeting PTEN, Mol Med Rep, vol.8, issue.6, pp.1741-1747, 2013.

X. Ma, F. Shang, Q. Zhang, Q. Lin, S. Han et al., MicroRNA-322 attenuates aluminum maltolate-induced apoptosis in the human SH-SY5Y neuroblastoma cell line, Mol Med Rep, vol.16, issue.2, pp.2199-204, 2017.

X. Ge, Y. Zhang, Y. Zuo, M. Israr, B. Li et al., Transcriptomic analysis reveals the molecular mechanism of Alzheimerrelated neuropathology induced by sevoflurane in mice, J Cell Biochem, vol.570, issue.7761, pp.332-337, 2019.

C. Wang, Y. H. Pan, Y. Wang, G. Blatt, and X. B. Yuan, Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum, Mol Brain, vol.12, issue.1, p.40, 2019.

X. Duan, A. Krishnaswamy, M. A. Laboulaye, J. Liu, Y. R. Peng et al., Cadherin combinations recruit dendrites of distinct retinal neurons to a shared Interneuronal scaffold, Neuron, vol.99, issue.6, pp.1145-54, 2018.

X. Chen, F. Long, B. Cai, X. Chen, and G. Chen, A novel relationship for schizophrenia, bipolar and major depressive disorder part 5: a hint from chromosome 5 high density association screen, Am J Transl Res, vol.9, issue.5, pp.2473-91, 2017.

C. Diez-planelles, P. Sanchez-lozano, M. C. Crespo, J. Gil-zamorano, R. Ribacoba et al., Circulating microRNAs in Huntington's disease: emerging mediators in metabolic impairment, Pharmacol Res, vol.108, pp.102-112, 2016.

S. T. Lee, K. Chu, W. S. Im, H. J. Yoon, J. Y. Im et al., Altered microRNA regulation in Huntington's disease models, Exp Neurol, vol.227, issue.1, pp.172-181, 2011.

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations