B. Passlick, D. Flieger, and L. Ziegler-heitbrock, Identification and characterization of a novel monocyte subpopulation in human peripheral blood, Blood, vol.74, pp.2527-2534, 1989.

E. Grage-griebenow, H. Flad, and M. Ernst, Heterogeneity of human peripheral blood monocyte subsets, J. Leukoc. Biol, vol.69, pp.11-20, 2001.

K. Belge, The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF, J. Immunol, vol.168, pp.3536-3542, 2002.

P. Ancuta, Fractalkine preferentially mediates arrest and migration of CD16+ monocytes, J. Exp. Med, vol.197, pp.1701-1708, 2003.

L. Ziegler-heitbrock, Nomenclature of monocytes and dendritic cells in blood, vol.116, pp.74-80, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00611173

K. L. Wong, Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets, Blood, vol.118, pp.16-31, 2011.

A. M. Zawada, SuperSAGE evidence for CD14 ++CD16 + monocytes as a third monocyte subset, Blood, vol.118, pp.50-61, 2011.

M. Frankenberger, A defect of CD16-positive monocytes can occur without disease, Immunobiology, vol.218, pp.169-174, 2013.

C. Schmidl, Transcription and enhancer profiling in human monocyte subsets, Blood, vol.123, pp.90-100, 2014.

S. T. Gren, A single-cell gene-expression profile reveals inter-cellular heterogeneity within human monocyte subsets, Plos One, vol.10, pp.1-20, 2015.

J. Cros, Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors, Immunity, vol.33, pp.375-386, 2010.

J. Skrzeczynska-moncznik, Peripheral blood CD14 high CD16+ monocytes are main producers of IL-10, Scand. J. Immunol, vol.67, pp.152-159, 2008.

R. Mukherjee, Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic, Lupus Erythematous. Sci. Rep, vol.5, p.13886, 2015.

R. T. Semnani, Human monocyte subsets at homeostasis and their perturbation in numbers and function in filarial infection, Infect. Immun, vol.82, pp.4438-4446, 2014.

M. Rossol, S. Kraus, M. Pierer, C. Baerwald, and U. Wagner, The CD14 bright CD16+ monocyte subset is expanded in rheumatoid arthritis and promotes expansion of the Th17 cell population, Arthritis Rheum, vol.64, pp.671-677, 2012.

K. L. Wong, The three human monocyte subsets: Implications for health and disease, Immunol. Res, vol.53, pp.41-57, 2012.

C. Smedman, FluoroSpot analysis of TLR-activated monocytes reveals several distinct cytokine-secreting subpopulations, Scand. J. Immunol, vol.75, pp.249-258, 2012.

A. Haziot, Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity, vol.4, pp.407-421, 1996.

M. Kristiansen, Identification of the haemoglobin scavenger receptor, Nature, vol.409, pp.198-201, 2001.

L. C. Bover, A Previously unrecognized protein-protein interaction between TWEAK and CD163: potential biological implications, J. Immunol, vol.178, pp.8183-8194, 2007.

R. Stillwell and B. E. Bierer, T cell signal transduction and the role of CD7 in costimulation, Immunol. Res, vol.24, pp.31-52, 2001.

F. Geissmann, S. Jung, and D. R. Littman, Blood monocytes consist of two principal subsets with distinct migratory properties, Immunity, vol.19, pp.71-82, 2003.

M. Bastian, S. Heymann, M. Jacomy, and . Gephi, An open source software for exploring and manipulating networks. Third Int. AAAI Conf. Weblogs Soc. Media, pp.361-362, 2009.

M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software, Plos One, vol.9, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01361779

P. Qiu, Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE, Nat. Biotechnol, vol.29, pp.886-891, 2011.

E. D. Amir, viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, Nat. Biotechnol, vol.31, pp.545-552, 2013.

R. N. Hanna, NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis, Circ. Res, vol.110, pp.416-427, 2012.

H. M. Chen, Neutrophils and monocytes express high levels of PU.1 (Spi-1) but not Spi-B, Blood, vol.85, pp.2918-2946, 1995.

M. Ingersoll, Comparison of gene expression profiles between human and mouse monocyte subsets, Blood, vol.115, pp.10-20, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01662522

D. Selimoglubuet, Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia, Blood, vol.156, pp.649-654, 2015.

A. Rivollier, J. He, A. Kole, V. Valatas, and B. L. Kelsall, Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon, J. Exp. Med, vol.209, pp.139-55, 2012.

D. Hudig, K. W. Hunter, W. J. Diamond, and D. Redelman, Properties of human blood monocytes. II. Monocytes from healthy adults are highly heterogeneous within and among individuals, Cytom. Part B Clin. Cytom, vol.86, pp.121-134, 2014.

V. Segura, In-depth proteomic characterization of classical and non-classical monocyte subsets, Proteomes, vol.6, 2018.

M. Roederer, The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis, Cell, vol.161, pp.387-403, 2015.

B. Piasecka, Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges, Proc. Natl. Acad. Sci. USA, vol.115, pp.488-497, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01721850

A. Liston, E. J. Carr, and M. A. Linterman, Shaping variation in the human immune system, Trends Immunol, vol.37, pp.637-646, 2016.

P. Brodin and M. M. Davis, Human immune system variation, Nat. Rev. Immunol, vol.17, pp.21-29, 2017.

B. Puissant-lubrano, Distinct effect of age, sex, and CMV seropositivity on dendritic cells and monocytes in human blood, Immunol. Cell Biol, vol.96, pp.114-120, 2018.

T. Hachiya, Genome-wide identification of inter-individually variable DNA methylation sites improves the efficacy of epigenetic association studies, npj Genomic Med, vol.2, pp.1-13, 2017.

C. Schröder, Regions of common inter-individual DNA methylation differences in human monocytes: Genetic basis and potential function, Epigenetics and Chromatin, vol.10, pp.1-18, 2017.

L. Chen, Genetic drivers of epigenetic and transcriptional variation in human immune cells, Cell, vol.167, pp.1398-1414, 2016.

V. K. Patel, H. Williams, S. C. Li, J. P. Fletcher, and H. J. Medbury, Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels, Atherosclerosis, vol.263, pp.15-23, 2017.

P. Brodin, Variation in the human immune system is largely driven by non-heritable influences, Cell, vol.160, pp.37-47, 2015.

A. C. Villani, Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors, Science, vol.356, p.4573, 2017.

B. Smiljanovic, Single cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors, 2017.

C. A. Dutertre, Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells, Immunity, vol.51, pp.1-17, 2019.

A. A. Hamers, Human monocyte heterogeneity as revealed by high-dimensional mass cytometry, Arterioscler. Thromb. Vasc. Biol, vol.39, pp.25-36, 2019.

V. Faivre, Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis, Plos One, vol.7, p.47209, 2012.

R. P. Wersto, Doublet discrimination in DNA cell-cycle analysis, Commun. Clin. Cytom, vol.46, pp.296-306, 2001.

T. Vasselon, P. A. Detmers, D. Charron, and A. Haziot, TLR2 recognizes a bacterial lipopeptide through direct binding, J. Immunol, vol.173, pp.7401-7406, 2004.