M. F. Azevedo, F. R. Faucz, E. Bimpaki, A. Horvath, I. Levy et al., Clinical and molecular genetics of the phosphodiesterases (PDEs), Endocr. Rev, vol.35, pp.195-233, 2014.

M. L. Wong, F. Whelan, P. Deloukas, P. Whittaker, M. Delgado et al., Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response, Proc. Natl. Acad. Sci, vol.103, pp.15124-15129, 2006.

S. H. Francis, M. A. Blount, and J. D. Corbin, Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions, Physiol. Rev, vol.91, pp.651-690, 2011.

G. S. Baillie, G. S. Tejeda, and M. P. Kelly, Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: Inhibition and beyond, Nat. Rev. Drug Discov, vol.18, pp.770-796, 2019.

A. M. Fajardo, G. A. Piazza, and H. N. Tinsley, The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment, Cancers, vol.6, pp.436-458, 2014.

A. Lerner and P. M. Epstein, Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies, Biochem. J, vol.393, pp.21-41, 2006.

R. K. Chawla, S. M. Shlaer, D. H. Lawson, T. G. Murray, F. Schmidt et al., Elevated plasma and urinary guanosine 3':5'-monophosphate and increased production rate in patients with neoplastic diseases, Cancer Res, vol.40, pp.3915-3920, 1980.

M. Pertuit, A. Barlier, A. Enjalbert, and C. Gérard, Signalling pathway alterations in pituitary adenomas: Involvement of Gsalpha, cAMP and mitogen-activated protein kinases, J. Neuroendocrinol, vol.21, pp.869-877, 2009.

F. R. Derubertis and P. A. Craven, Sequential alterations in the hepatic content and metabolism of cyclic AMP and cyclic GMP induced by DL-ethionine: Evidence for malignant transformation of liver with a sustained increase in cyclic AMP, Metabolism, vol.25, pp.1611-1625, 1976.

A. Aleksijevic, C. Lugnier, C. Giron, S. Mayer, J. C. Stoclet et al., Cyclic AMP and cyclic GMP phosphodiesterase activities in Hodgkin's disease lymphocytes, Int. J. Immunopharmacol, vol.9, pp.525-531, 1987.

L. Zhang, F. Murray, A. Zahno, J. R. Kanter, D. Chou et al., Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia, Proc. Natl. Acad. Sci, vol.105, pp.19532-19537, 2008.

V. Cesarini, M. Martini, L. R. Vitiani, G. L. Gravina, S. Diagostino et al., Type 5 phosphodiesterase regulates glioblastoma multiforme aggressiveness and clinical outcome, Oncotarget, vol.8, pp.13223-13239, 2017.

D. G. Mcewan, V. G. Brunton, G. S. Baillie, N. R. Leslie, M. D. Houslay et al., Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase, Cancer Res, vol.67, pp.5248-5257, 2007.

P. Goldhoff, N. M. Warrington, A. Limbrick-ddjr-hope, B. M. Woerner, E. Jackson et al., Targeted inhibition of cyclic AMP phosphodiesterase-4 promotes brain tumor regression, Clin. Cancer Res, vol.14, pp.7717-7725, 2008.

G. Vigone, L. C. Shuhaibar, J. R. Egbert, T. F. Uliasz, M. A. Movsesian et al., Multiple cAMP Phosphodiesterases Act Together to Prevent Premature Oocyte Meiosis and Ovulation, Endocrinology, vol.159, pp.2142-2152, 2018.

E. Z. Drobnis and A. K. Nangia, Phosphodiesterase Inhibitors (PDE Inhibitors) and Male Reproduction, Adv. Exp. Med. Biol, vol.1034, pp.29-38, 2017.

E. Szarek and C. A. Stratakis, Phosphodiesterases and adrenal Cushing in mice and humans, Horm. Metab. Res, vol.46, pp.863-868, 2014.

A. Rothenbuhler, A. Horvath, R. Libé, F. R. Faucz, A. Fratticci et al., Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours, Clin. Endocrinol, vol.77, pp.195-199, 2012.

R. Libé, A. Fratticci, J. Coste, F. Tissier, A. Horvath et al., Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors, Clin. Cancer Res, vol.14, pp.4016-4024, 2008.

S. Zheng, A. D. Cherniack, N. Dewal, R. A. Moffitt, L. Danilova et al., Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, vol.29, pp.723-736, 2016.

C. C. Juhlin, G. Goh, J. M. Healy, A. L. Fonseca, U. I. Scholl et al., Whole-exome Sequencing Characterizes the Landscape of Somatic Mutations and Copy Number Alterations in Adrenocortical Carcinoma, J. Clin. Endocrinol. Metab, vol.100, pp.493-502, 2015.

E. Butt, J. Beltman, D. E. Becker, G. S. Jensen, S. D. Rybalkin et al., Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: Topology of the catalytic sites and comparison with other cyclic AMP-binding proteins, Mol. Pharmacol, vol.47, pp.340-347, 1995.

A. Horvath, S. Boikis, C. Giatzakis, A. Robinson-white, L. Groussin et al., A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia, Nat. Genet, vol.38, pp.794-800, 2006.

Y. Sato, S. Maekawa, R. Ishii, M. Sanada, T. Morikawa et al., Recurrent somatic mutations underlie corticotropin-independent Cushing's syndrome, Science, vol.344, pp.917-920, 2014.

J. A. Wieneke, L. D. Thompson, and C. S. Heffess, Adrenal Cortical Neoplasms in the Pediatric Population: A Clinicopathologic and Immunophenotypic Analysis of 83 Patients, Am. J. Surg. Pathol, vol.27, pp.867-881, 2003.

E. M. Pinto, X. Chen, J. Easton, D. Finkelstein, Z. Liu et al., Genomic landscape of paediatric adrenocortical tumours, Nat. Commun, 2015.

E. M. Pinto, C. Rodriguez-galindo, S. B. Pounds, L. Wang, M. R. Clay et al., Identification of Clinical and Biologic Correlates Associated With Outcome in Children With Adrenocortical Tumors Without Germline TP53 Mutations: A St Jude Adrenocortical Tumor Registry and Children's Oncology Group Study, J. Clin. Oncol, vol.35, pp.3956-3963, 2017.

J. D. Wasserman, A. Novokmet, C. Eichler-jonsson, R. C. Ribeiro, C. Rodriguez-galingo et al., Prevalence andFunctional Consequence of TP53 Mutations in Pediatric Adrenocortical Carcinoma: A Children's Oncology Group Study, J. Clin. Oncol, vol.33, pp.602-609, 2015.

G. P. Zambetti, The p53 Mutation "Gradient Effect" and Its Clinical Implications, J. Cell Physiol, vol.213, pp.370-373, 2007.

R. Libe, A. Horvath, D. Vezzosi, A. Fratticci, J. Coste et al., Frequend Phosphodiesterase 11A Gene (PDE11A) Defects in Patients With Carney Complex (CNC) Caused by PRKAR1A Mutations: PDE11A May Contribute to Adrenal and Testicular Tumors in CNC as a Modifier of the Phenotype, J. Clin. Endocrinol. Metab, vol.96, 2011.

R. B. De-alexandre, A. D. Horvath, E. Szarek, A. D. Manning, L. F. Leal et al., Phosphodiesterase sequence variants may predispose to prostate cancer, Endocr. Relat. Cancer, vol.22, pp.519-530, 2015.

E. Saloustros, P. Salpea, M. Starost, S. Liu, F. R. Faucz et al., Prkar1a Gene Knockout in the Pancreas Leads to Neuroendocrine Tumorigenesis, Endocr. Relat. Cancer, vol.24, pp.31-40, 2017.

K. Wilkinson, E. R. Velloso, L. F. Lopes, C. Lee, J. C. Aster et al., Cloning of the t(1;5)(q23;q33) in a myeloproliferative disorder associated with eosinophilia: Involvement of PDGFRB and response to imatinib, Blood, vol.102, pp.4187-4190, 2003.

S. K. Gara, J. Lack, L. Zhang, E. Harris, M. Cam et al., Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors, Nat. Commun, 2018.

R. C. Ribeiro, F. Sandrini, B. Figueiredo, G. P. Zambetti, E. Michalkiewicz et al., An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma, Proc. Natl. Acad. Sci, vol.98, pp.9330-9335, 2001.

A. C. Latronico, E. M. Pinto, S. Domenice, M. C. Fragoso, R. M. Martin et al., An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors, J. Clin. Endocrinol. Metab, vol.86, pp.4970-4973, 2001.

E. M. Pinto, A. E. Billerbeck, M. C. Villares, S. Domenice, B. B. Mendonca et al., Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors, Arq. Bras. Endocrinol. Metabol, vol.48, pp.647-650, 2004.

Q. Yang, M. J. Khoury, J. M. Friedman, J. Little, and W. D. Flanders, How many genes underlie the occurrence of common complex diseases in the population?, Int. J. Epidemiol, vol.34, pp.1129-1137, 2005.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the authors. Licensee MDPI