, Eomes and PLZF expression were analyzed in innate CD8(+) T cells and iNKT cells, respectively, among peripheral blood mononuclear cells (PBMCs) by flow cytometry ex vivo after cellular permeabilization. Eomes expression and PLZF were analyzed after gating on killer cell Ig-like receptor (KIR)/ NKG2A(+) CD8(+) CD3(+) cells and 6B11(+) CD3(+) cells, respectively. Mean fluorescence intensity (MFI) values are expressed relative to that of isotype control. Data from healthy donor (n = 5), chronic myeloid leukemia (CML)-CP (n = 6), and CML-imatinib mesylate (n = 3) were pooled. The MFI of PLZF-expressing iNKT, FigUre 4 | (a) Positive correlation between invariant natural killer T (iNKT) cell promyelocytic leukemia zinc finger (PLZF) expression and innate CD8 T cell Eomes expression

, 0043). (B-D) Innate CD8(+) T cells depend on IL-4 for homeostasis/expansion. PBMCs from five HDs were cultured for 7 days with IL-4 or medium alone (not stimulated, NS) and then analyzed by flow cytometry ex vivo after cellular permeabilization for innate CD8(+) T cells. Frequency (B), absolute cell number (c), and Eomes MFI (D) (mean ± SEM) of CD3(+) CD8(+) cells among, p.0

, CD8(+) CD3(+) cells among CD3(+) CD8(+) cells (right) are shown. Statistical significance was determined by the one-tailed Wilcoxon non-parametric test

. Jacomet, Innate-CD8(+) T-Cell Deficiency in CML Frontiers in Immunology | www, vol.7, p.688, 2017.

Y. J. Lee, S. C. Jameson, and K. A. Hogquist, Alternative memory in the CD8 T cell lineage, Trends Immunol, vol.32, issue.2, pp.50-56, 2011.

S. C. Jameson, Y. J. Lee, and K. A. Hogquist, Innate memory T cells, Adv Immunol, vol.126, pp.173-213, 2015.

A. D. Akue, J. Lee, and J. Sc, Derivation and maintenance of virtual memory CD8 T cells, J Immunol, vol.188, issue.6, pp.2516-2539, 2012.

J. Lee, S. E. Hamilton, A. D. Akue, K. A. Hogquist, and S. C. Jameson, Virtual memory CD8 T cells display unique functional properties, Proc Natl Acad Sci U S A, vol.110, issue.33, pp.13498-503, 2013.

S. E. Hamilton, M. C. Wolkers, S. P. Schoenberger, and S. C. Jameson, The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells, Nat Immunol, vol.7, issue.5, pp.475-81, 2006.

S. E. Hamilton and S. C. Jameson, The nature of the lymphopenic environment dictates protective function of homeostatic-memory CD8+ T cells, Proc Natl Acad Sci U S A, issue.47, pp.18484-18493, 2008.

J. Hu, N. Sahu, E. Walsh, and A. August, Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk, Eur J Immunol, vol.37, issue.10, pp.2892-2901, 2007.

C. Haluszczak, A. D. Akue, S. E. Hamilton, L. Johnson, L. Pujanauski et al., The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion, J Exp Med, vol.206, issue.2, pp.435-483, 2009.

N. K. Björkström, V. Béziat, F. Cichocki, L. L. Liu, J. Levine et al., CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells, Blood, vol.120, issue.17, pp.3455-65, 2012.

B. Huard and L. Karlsson, A subpopulation of CD8+ T cells specific for melanocyte differentiation antigens expresses killer inhibitory receptors (KIR) in healthy donors: evidence for a role of KIR in the control of peripheral tolerance, Eur J Immunol, vol.30, issue.6, pp.1665-75, 2000.

L. T. Van-der-veken, D. Campelo, M. Van-der-hoorn, M. A. Hagedoorn, R. S. Van-egmond et al., Functional analysis of killer Ig-like receptor-expressing cytomegalovirus-specific CD8+ T cells, J Immunol, vol.182, issue.1, pp.92-101, 2009.

F. Jacomet, E. Cayssials, S. Basbous, A. Levescot, N. Piccirilli et al., Evidence for eomesodermin-expressing innate-like CD8(+) KIR/NKG2A(+) T cells in human adults and cord blood samples, Eur J Immunol, vol.45, issue.7, pp.1926-1959, 2015.

L. Van-kaer, Innate and virtual memory T cells in man, Eur J Immunol, vol.45, issue.7, pp.1916-1936, 2015.

M. Verykokakis, M. D. Boos, A. Bendelac, and B. L. Kee, SAP protein-dependent natural killer T-like cells regulate the development of CD8(+) T cells with innate lymphocyte characteristics, Immunity, vol.33, issue.2, pp.203-218, 2010.

M. A. Weinreich, O. A. Odumade, S. C. Jameson, and K. A. Hogquist, T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells, Nat Immunol, issue.8, pp.709-725, 2010.

J. M. Goldman and J. V. Melo, Chronic myeloid leukemia -advances in biology and new approaches to treatment, N Engl J Med, vol.349, issue.15, pp.1451-64, 2003.

B. J. Druker, F. Guilhot, S. G. O'brien, I. Gathmann, H. Kantarjian et al., Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia, N Engl J Med, vol.355, issue.23, pp.2408-2425, 2006.

A. Burchert, S. Saussele, E. Eigendorff, M. C. Müller, K. Sohlbach et al., Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia, Leukemia, vol.29, issue.6, pp.1331-1336, 2015.

R. Dong, K. Cwynarski, A. Entwistle, F. Marelli-berg, F. Dazzi et al., Dendritic cells from CML patients have altered actin organization, reduced antigen processing, and impaired migration, Blood, vol.101, issue.9, pp.3560-3567, 2003.

C. I. Chen, S. Koschmieder, L. Kerstiens, M. Schemionek, B. Altvater et al., NK cells are dysfunctional in human chronic myelogenous leukemia before and on imatinib treatment and in BCR-ABL-positive mice, Leukemia, vol.26, issue.3, pp.465-74, 2012.

E. G. Chiorean, S. J. Dylla, K. Olsen, T. Lenvik, Y. Soignier et al., BCR/ ABL alters the function of NK cells and the acquisition of killer immunoglobulin-like receptors (KIRs), Blood, vol.101, issue.9, pp.3527-3560, 2003.

A. Rossignol, A. Levescot, F. Jacomet, A. Robin, S. Basbous et al., Evidence for BCR-ABL-dependent dysfunctions of iNKT cells from chronic myeloid leukemia patients, Eur J Immunol, vol.42, issue.7, pp.1870-1875, 2012.

S. P. Berzins, M. J. Smyth, and A. G. Baxter, Presumed guilty: natural killer T cell defects and human disease, Nat Rev Immunol, vol.11, issue.2, pp.131-173, 2011.

S. Fujii, K. Shimizu, Y. Okamoto, N. Kunii, T. Nakayama et al., NKT cells as an ideal anti-tumor immunotherapeutic, Front Immunol, vol.4, p.409, 2013.

J. L. Matsuda, T. Mallevaey, J. Scott-browne, and L. Gapin, CD1d-restricted iNKT cells, the "Swiss-Army knife" of the immune system, Curr Opin Immunol, vol.20, issue.3, pp.358-68, 2008.

E. Macho-fernandez and M. Brigl, The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions, Front Immunol, vol.6, p.362, 2015.

S. Basbous, A. Levescot, N. Piccirilli, F. Brizard, F. Guilhot et al., The Rho-ROCK pathway as a new pathological mechanism of innate immune subversion in chronic myeloid leukaemia, J Pathol, vol.240, issue.3, pp.262-270, 2016.

A. K. Savage, M. G. Constantinides, J. Han, D. Picard, E. Martin et al., The transcription factor PLZF directs the effector program of the NKT cell lineage, Immunity, vol.29, issue.3, pp.391-403, 2008.

D. Kovalovsky, O. U. Uche, S. Eladad, R. M. Hobbs, W. Yi et al., The BTB-zinc finger transcriptional regulator, PLZF, controls the development of iNKT cell effector functions, Nat Immunol, vol.9, issue.9, pp.1055-64, 2008.

W. Dummer, A. G. Niethammer, R. Baccala, B. R. Lawson, N. Wagner et al., T cell homeostatic proliferation elicits effective antitumor autoimmunity, J Clin Invest, vol.110, issue.2, pp.185-92, 2002.

H. Hu, C. H. Poehlein, W. J. Urba, and B. A. Fox, Development of antitumor immune responses in reconstituted lymphopenic hosts, Cancer Res, vol.62, issue.14, pp.3914-3923, 2002.

Q. Li, R. R. Rao, K. Araki, K. Pollizzi, K. Odunsi et al., A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity, Immunity, vol.34, issue.4, pp.541-53, 2011.

L. Wang, R. Li, G. Yang, M. Lim, A. O'hara et al., Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumor regression and editing, Cancer Res, vol.65, issue.22, pp.10569-77, 2005.

K. S. Schluns and L. Lefrançois, Cytokine control of memory T-cell development and survival, Nat Rev Immunol, vol.3, issue.4, pp.269-79, 2003.

C. D. Surh and J. Sprent, Homeostasis of naive and memory T cells, Immunity, vol.29, issue.6, pp.848-62, 2008.

M. M. Sandau, C. J. Winstead, and S. C. Jameson, IL-15 is required for sustained lymphopenia-driven proliferation and accumulation of CD8 T cells, J Immunol, vol.179, issue.1, pp.120-125, 2007.

T. Sosinowski, J. T. White, E. W. Cross, C. Haluszczak, P. Marrack et al., CD8?+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function, J Immunol, vol.190, issue.5, pp.1936-1983, 2013.