T. Pringsheim, N. Jette, A. Frolkis, and T. D. Steeves, The prevalence of Parkinson's disease: A systematic review and meta-analysis, Mov. Disord, vol.29, pp.1583-1590, 2014.

J. Jankovic, Parkinson's disease: Clinical features and diagnosis, J. Neurol. Neurosurg. Psychiatry, vol.79, pp.368-376, 2008.

W. Poewe, K. Seppi, C. M. Tanner, G. M. Halliday, P. Brundin et al., Nat. Rev. Dis. Primers, vol.3, p.17013, 2017.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes et al., Lewy bodies, vol.388, pp.839-840, 1997.

S. H. Shahmoradian, A. J. Lewis, C. Genoud, J. Hench, T. E. Moors et al., Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes, Nat. Neurosci, vol.22, pp.1099-1109, 2019.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the ?-Synuclein Gene Identified in Families with Parkinson's Disease, Science, vol.276, pp.2045-2047, 1997.

D. Eliezer, E. Kutluay, R. Bussell, . Jr, and G. Browne, Conformational properties of alpha-synuclein in its free and lipid-associated states, J. Mol. Biol, vol.307, pp.1061-1073, 2001.

T. Bartels, J. G. Choi, and D. J. Selkoe, alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation, Nature, vol.477, pp.107-110, 2011.

J. Burre, S. Vivona, J. Diao, M. Sharma, A. T. Brunger et al., Properties of native brain alphasynuclein, Nature, vol.498, pp.4-6, 2013.

B. I. Giasson, I. V. Murray, J. Q. Trojanowski, and V. M. Lee, A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly, J. Biol. Chem, vol.276, pp.2380-2386, 2001.

B. Winner, R. Jappelli, S. K. Maji, P. A. Desplats, L. Boyer et al., In vivo demonstration that alpha-synuclein oligomers are toxic, Proc Natl Acad Sci, vol.108, pp.4194-4199, 2011.

D. P. Karpinar, M. B. Balija, S. Kugler, F. Opazo, N. Rezaei-ghaleh et al., Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson's disease models, EMBO J, vol.28, pp.3256-3268, 2009.

A. Lau, R. W. So, H. H. Lau, J. C. Sang, A. Ruiz-riquelme et al., Synuclein strains target distinct brain regions and cell types, vol.2020, pp.21-31

M. Shahnawaz, A. Mukherjee, S. Pritzkow, N. Mendez, P. Rabadia et al., Discriminating alpha-synuclein strains in Parkinson's disease and multiple system atrophy, Nature, vol.578, pp.273-277, 2020.

C. Peng, R. J. Gathagan, D. J. Covell, C. Medellin, A. Stieber et al., Cellular milieu imparts distinct pathological alpha-synuclein strains in alpha-synucleinopathies, Nature, vol.557, pp.558-563, 2018.

M. J. Devine, M. Ryten, P. Vodicka, A. J. Thomson, T. Burdon et al., Parkinson's disease induced pluripotent stem cells with triplication of the alpha-synuclein locus, Nat. Commun, 2011.

A. R. Massey and J. D. Beckham, Alpha-Synuclein, a Novel Viral Restriction Factor Hiding in Plain Sight, DNA Cell Biol, vol.35, pp.643-645, 2016.

S. G. Chen, V. Stribinskis, M. J. Rane, D. R. Demuth, E. Gozal et al., Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans, Sci. Rep, vol.6, p.34477, 2016.

A. B. Manning-bog, A. L. Mccormack, J. Li, V. N. Uversky, A. L. Fink et al., The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: Paraquat and alpha-synuclein, J. Biol. Chem, vol.277, pp.1641-1644, 2002.

A. Kumar, F. Leinisch, M. B. Kadiiska, J. Corbett, and R. P. Mason, Formation and Implications of Alpha-Synuclein Radical in Maneb-and Paraquat-Induced Models of Parkinson's Disease, Mol. Neurobiol, vol.53, pp.2983-2994, 2016.

J. N. Guzman, J. Sanchez-padilla, D. Wokosin, J. Kondapalli, E. Ilijic et al., Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1, Nature, vol.468, pp.696-700, 2010.

D. J. Surmeier, G. M. Halliday, and T. Simuni, Calcium, mitochondrial dysfunction and slowing the progression of Parkinson's disease, Exp. Neurol, vol.298, pp.202-209, 2017.

E. C. Hirsch and S. Hunot, Neuroinflammation in Parkinson's disease: A target for neuroprotection?, Lancet. Neurol, vol.8, pp.382-397, 2009.

B. Dehay, M. Bourdenx, P. Gorry, S. Przedborski, M. Vila et al., Targeting ?-synuclein for treatment of Parkinson's disease: Mechanistic and therapeutic considerations, Lancet. Neurol, vol.14, pp.855-866, 2015.

L. Maroteaux, J. T. Campanelli, and R. H. Scheller, Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal, J. Neurosci, vol.8, pp.2804-2815, 1988.

J. Burre, M. Sharma, T. Tsetsenis, V. Buchman, M. R. Etherton et al., Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro, Science, vol.329, pp.1663-1667, 2010.

B. K. Choi, M. G. Choi, J. Y. Kim, Y. Yang, Y. Lai et al., Large alpha-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking, Proc. Natl Acad Sci, vol.110, pp.4087-4092, 2013.

S. L. Senior, N. Ninkina, R. Deacon, D. Bannerman, V. L. Buchman et al., Increased striatal dopamine release and hyperdopaminergic-like behaviour in mice lacking both alphasynuclein and gamma-synuclein, Eur. J. Neurosci, vol.27, pp.947-957, 2008.

S. Anwar, O. Peters, S. Millership, N. Ninkina, N. Doig et al., Functional alterations to the nigrostriatal system in mice lacking all three members of the synuclein family, J. Neurosci, vol.31, pp.7264-7274, 2011.

D. E. Mor, E. Tsika, J. R. Mazzulli, N. S. Gould, H. Kim et al., Dopamine induces soluble alpha-synuclein oligomers and nigrostriatal degeneration, Nat. Neurosci, vol.20, pp.1560-1568, 2017.

L. F. Burbulla, P. Song, J. R. Mazzulli, E. Zampese, Y. C. Wong et al., Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease, vol.357, pp.1255-1261, 2017.

W. W. Smith, H. Jiang, Z. Pei, Y. Tanaka, H. Morita et al., Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alphasynuclein-induced toxicity, Hum. Mol. Genet, vol.14, pp.3801-3811, 2005.

L. A. Volpicelli-daley, K. C. Luk, T. P. Patel, S. A. Tanik, D. M. Riddle et al., Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death, Neuron, vol.72, pp.57-71, 2011.

L. Bousset, L. Pieri, G. Ruiz-arlandis, J. Gath, P. H. Jensen et al., Structural and functional characterization of two alpha-synuclein strains, Nat. Commun, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183047

C. Hansen, E. Angot, A. L. Bergstrom, J. A. Steiner, L. Pieri et al., alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells, J. Clin. Invest, vol.121, pp.715-725, 2011.

S. Appel-cresswell, C. Vilarino-guell, M. Encarnacion, H. Sherman, I. Yu et al., Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson's disease, Mov. Disord, vol.28, pp.811-813, 2013.

R. Krüger, W. Kuhn, T. Müller, D. Woitalla, M. Graeber et al., AlaSOPro mutation in the gene encoding ?-synuclein in Parkinson's disease, Nat. Genet, vol.18, pp.106-108, 1998.

S. Lesage, M. Anheim, F. Letournel, L. Bousset, A. Honoré et al., G51D ?-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome, Ann. Neurol, vol.73, pp.459-471, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01133851

P. Pasanen, L. Myllykangas, M. Siitonen, A. Raunio, S. Kaakkola et al., A novel ?-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson's disease-type pathology, Neurobiol. Aging, vol.35, 2014.

C. Proukakis, C. G. Dudzik, T. Brier, D. S. Mackay, J. M. Cooper et al., A novel ?-synuclein missense mutation in Parkinson disease, Neurology, vol.80, pp.1062-1064, 2013.

J. J. Zarranz, J. Alegre, J. C. Gomez-esteban, E. Lezcano, R. Ros et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol, vol.55, pp.164-173, 2004.

H. Yoshino, M. Hirano, A. J. Stoessl, Y. Imamichi, A. Ikeda et al., Homozygous alpha-synuclein p.A53V in familial Parkinson's disease, Neurobiol. Aging, vol.57, p.212, 2017.

M. C. Chartier-harlin, J. Kachergus, C. Roumier, V. Mouroux, X. Douay et al., Alpha-synuclein locus duplication as a cause of familial Parkinson's disease, Lancet, vol.364, pp.17103-17104, 2004.

A. B. Singleton, M. Farrer, J. Johnson, A. Singleton, S. Hague et al., Synuclein Locus Triplication Causes Parkinson's Disease, vol.302, pp.841-841, 2003.

J. L. Eriksen, S. Przedborski, and L. Petrucelli, Gene dosage and pathogenesis of Parkinson's disease, Trends Mol. Med, vol.11, pp.91-96, 2005.

M. Farrer, J. Kachergus, L. Forno, S. Lincoln, D. Wang et al., Comparison of kindreds with parkinsonism and ?-synuclein genomic multiplications, Ann. Neurol, vol.55, pp.174-179, 2004.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-811, 1998.

M. Scherr and M. Eder, Gene Silencing by Small Regulatory RNAs in Mammalian Cells, Cell Cycle, vol.6, pp.444-449, 2007.

M. K. Sapru, J. W. Yates, S. Hogan, L. Jiang, J. Halter et al., Silencing of human alpha-synuclein in vitro and in rat brain using lentiviral-mediated RNAi, Exp. Neurol, vol.198, pp.382-390, 2006.

H. Hayashita-kinoh, M. Yamada, T. Yokota, Y. Mizuno, and H. Mochizuki, Down-regulation of alphasynuclein expression can rescue dopaminergic cells from cell death in the substantia nigra of Parkinson's disease rat model, Biochem. Biophys. Res. Commun, vol.341, pp.1088-1095, 2006.

J. Lewis, H. Melrose, D. Bumcrot, A. Hope, C. Zehr et al., In vivo silencing of alpha-synuclein using naked siRNA, Mol. Neurodegener, 2008.

E. Junn, K. Lee, B. S. Jeong, T. W. Chan, J. Im et al., Repression of ?-synuclein expression and toxicity by microRNA-7, Proc. Natl. Acad. Sci, vol.106, p.13052, 2009.

E. Doxakis, Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153, J. Biol. Chem, vol.285, pp.12726-12734, 2010.

O. S. Gorbatyuk, S. Li, K. Nash, M. Gorbatyuk, A. S. Lewin et al., In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration, Mol. Therapy, vol.18, pp.1450-1457, 2010.

C. E. Khodr, M. K. Sapru, J. Pedapati, Y. Han, N. C. West et al., An alpha-synuclein AAV gene silencing vector ameliorates a behavioral deficit in a rat model of Parkinson's disease, but displays toxicity in dopamine neurons, Brain Res, vol.1395, pp.94-107, 2011.

Y. Han, C. E. Khodr, M. K. Sapru, J. Pedapati, and M. C. Bohn, A microRNA embedded AAV alpha-synuclein gene silencing vector for dopaminergic neurons, Brain Res, vol.1386, pp.15-24, 2011.

C. E. Khodr, A. Becerra, Y. Han, and M. C. Bohn, Targeting alpha-synuclein with a microRNA-embedded silencing vector in the rat substantia nigra: Positive and negative effects, Brain Res, vol.1550, pp.47-60, 2014.

T. J. Collier, D. E. Redmond, . Jr, K. Steece-collier, J. W. Lipton et al., Is Alpha-Synuclein Lossof-Function a Contributor to Parkinsonian Pathology? Evidence from Non-human Primates, Front. Neurosci, vol.10, p.12, 2016.

M. J. Benskey, R. C. Sellnow, I. M. Sandoval, C. E. Sortwell, J. W. Lipton et al., Silencing Alpha Synuclein in Mature Nigral Neurons Results in Rapid Neuroinflammation and Subsequent Toxicity, Front. Mol. Neurosci, vol.11, p.36, 2018.

A. Zharikov, Q. Bai, B. R. De-miranda, A. Van-laar, J. T. Greenamyre et al., Long-term RNAi knockdown of alpha-synuclein in the adult rat substantia nigra without neurodegeneration, Neurobiol. Dis, vol.125, pp.146-153, 2019.

A. L. Mccormack, S. K. Mak, J. M. Henderson, D. Bumcrot, M. J. Farrer et al., Alpha-synuclein suppression by targeted small interfering RNA in the primate substantia nigra, PLoS ONE, vol.5, p.12122, 2010.

L. Chen, E. Huang, H. Wang, P. Qiu, and C. Liu, RNA interference targeting alpha-synuclein attenuates methamphetamine-induced neurotoxicity in SH-SY5Y cells, Brain Res, pp.59-67, 1521.

M. Takahashi, M. Suzuki, M. Fukuoka, N. Fujikake, S. Watanabe et al., Normalization of Overexpressed alpha-Synuclein Causing Parkinson's Disease By a Moderate Gene Silencing With RNA Interference, Mol. Therapy Nucleic. Acids, vol.4, p.241, 2015.

A. D. Zharikov, J. R. Cannon, V. Tapias, Q. Bai, M. P. Horowitz et al., A. shRNA targeting alpha-synuclein prevents neurodegeneration in a Parkinson's disease model, J. Clin. Invest, vol.125, pp.2721-2735, 2015.

C. R. Sibley and M. J. Wood, Identification of allele-specific RNAi effectors targeting genetic forms of Parkinson's disease, PLoS ONE, 2011.

J. M. Cooper, P. B. Wiklander, J. Z. Nordin, R. Al-shawi, M. J. Wood et al., Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice, Mov. Disord, vol.29, pp.1476-1485, 2014.

M. Schlich, F. Longhena, G. Faustini, C. M. O'driscoll, C. Sinico et al., Anionic liposomes for small interfering ribonucleic acid (siRNA) delivery to primary neuronal cells: Evaluation of alpha-synuclein knockdown efficacy, Nano Res, vol.10, pp.3496-3508, 2017.

K. Xhima, F. Nabbouh, K. Hynynen, I. Aubert, and A. Tandon, Noninvasive delivery of an alpha-synuclein gene silencing vector with magnetic resonance-guided focused ultrasound, Mov. Disord, vol.33, pp.1567-1579, 2018.

D. Alarcon-aris, A. Recasens, M. Galofre, I. Carballo-carbajal, N. Zacchi et al., Selective alpha-Synuclein Knockdown in Monoamine Neurons by Intranasal Oligonucleotide Delivery: Potential Therapy for Parkinson's Disease, Mol. Therapy, vol.26, pp.550-567, 2018.

H. Javed, S. A. Menon, K. M. Al-mansoori, A. Al-wandi, N. K. Majbour et al., Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson's Disease and Other Brain Disorders, Mol. Therapy, vol.24, pp.746-758, 2016.

B. Spencer, I. Trinh, E. Rockenstein, M. Mante, J. Florio et al., Systemic peptide mediated delivery of an siRNA targeting alpha-syn in the CNS ameliorates the neurodegenerative process in a transgenic model of Lewy body disease, Neurobiol. Dis, vol.127, pp.163-177, 2019.

G. Dermentzaki, N. Paschalidis, P. K. Politis, and L. Stefanis, Complex Effects of the ZSCAN21 Transcription Factor on Transcriptional Regulation of alpha-Synuclein in Primary Neuronal Cultures and in Vivo, J. Biol. Chem, vol.291, pp.8756-8772, 2016.

I. Lassot, S. Mora, S. Lesage, B. A. Zieba, E. Coque et al., The E3 Ubiquitin Ligases TRIM17 and TRIM41 Modulate alpha-Synuclein Expression by Regulating ZSCAN21, Cell Rep, vol.25, pp.2484-2496, 2018.

S. Mittal, K. Bjornevik, D. S. Im, A. Flierl, X. Dong et al., Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease, vol.357, pp.891-898, 2017.

H. Fujiwara, M. Hasegawa, N. Dohmae, A. Kawashima, E. Masliah et al., Iwatsubo, T. alpha-Synuclein is phosphorylated in synucleinopathy lesions, Nat. Cell Biol, vol.4, pp.160-164, 2002.

J. P. Anderson, D. E. Walker, J. M. Goldstein, R. De-laat, K. Banducci et al., Phosphorylation of Ser-129 is the dominant pathological modification of alphasynuclein in familial and sporadic Lewy body disease, J. Biol. Chem, vol.281, pp.29739-29752, 2006.

M. Okochi, J. Walter, A. Koyama, S. Nakajo, M. Baba et al., Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein, J. Biol. Chem, vol.275, pp.390-397, 2000.

A. N. Pronin, A. J. Morris, A. Surguchov, and J. L. Benovic, Synucleins are a novel class of substrates for G protein-coupled receptor kinases, J. Biol. Chem, vol.275, pp.26515-26522, 2000.

A. Negro, A. M. Brunati, A. Donella-deana, M. L. Massimino, and L. A. Pinna, Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation, FASEB J, vol.16, pp.210-212, 2002.

W. W. Smith, R. L. Margolis, X. Li, J. C. Troncoso, M. K. Lee et al., Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells, J. Neurosci, vol.25, pp.5544-5552, 2005.

A. Da-silveira, S. Schneider, B. L. Cifuentes-diaz, C. Sage, D. Abbas-terki et al., Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson's disease, Hum. Mol. Genet, vol.18, pp.872-887, 2009.

M. K. Mbefo, K. E. Paleologou, A. Boucharaba, A. Oueslati, H. Schell et al., Phosphorylation of synucleins by members of the Polo-like kinase family, J. Biol. Chem, vol.285, pp.2807-2822, 2010.

L. Chen and M. B. Feany, Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease, Nat. Neurosci, vol.8, pp.657-663, 2005.

L. Chen, M. Periquet, X. Wang, A. Negro, P. J. Mclean et al., Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation, J. Clin. Invest, vol.119, pp.3257-3265, 2009.

S. Arawaka, M. Wada, S. Goto, H. Karube, M. Sakamoto et al., The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson's disease, J. Neurosci, vol.26, pp.9227-9238, 2006.

K. J. Inglis, D. Chereau, E. F. Brigham, S. S. Chiou, S. Schobel et al., Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system, J. Biol. Chem, vol.284, pp.2598-2602, 2009.

E. A. Waxman and B. I. Giasson, Induction of intracellular tau aggregation is promoted by alpha-synuclein seeds and provides novel insights into the hyperphosphorylation of tau, J. Neurosci, vol.31, pp.7604-7618, 2011.

A. Oueslati, B. L. Schneider, P. Aebischer, and H. A. Lashuel, Polo-like kinase 2 regulates selective autophagic alpha-synuclein clearance and suppresses its toxicity in vivo, Proc. Natl. Acad. Sci, vol.110, pp.3945-3954, 2013.

D. L. Aubele, R. K. Hom, M. Adler, R. A. Galemmo, . Jr et al., Selective and brain-permeable polo-like kinase-2 (Plk-2) inhibitors that reduce alphasynuclein phosphorylation in rat brain, ChemMedChem, vol.8, pp.1295-1313, 2013.

C. Rodriguez-nogales, E. Garbayo, I. Martinez-valbuena, V. Sebastian, M. R. Luquin et al., Development and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein, Int. J. Pharm, vol.514, pp.142-149, 2016.

K. W. Lee, W. Chen, E. Junn, J. Y. Im, H. Grosso et al., Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model, J. Neurosci, vol.31, pp.6963-6971, 2011.

E. A. Waxman and B. I. Giasson, Specificity and regulation of casein kinase-mediated phosphorylation of alphasynuclein, J. Neuropathol. Exp. Neurol, vol.67, pp.402-416, 2008.

H. Lou, S. E. Montoya, T. N. Alerte, J. Wang, J. Wu et al., Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo, J. Biol. Chem, vol.285, pp.17648-17661, 2010.

B. I. Perez-revuelta, M. M. Hettich, A. Ciociaro, C. Rotermund, P. J. Kahle et al., Metformin lowers Ser-129 phosphorylated alpha-synuclein levels via mTOR-dependent protein phosphatase 2A activation, Cell Death Dis, 1209.

N. Katila, S. Bhurtel, S. Shadfar, S. Srivastav, S. Neupane et al., Metformin lowers alpha-synuclein phosphorylation and upregulates neurotrophic factor in the MPTP mouse model of Parkinson's disease, Neuropharmacology, vol.125, pp.396-407, 2017.

T. Tolstykh, J. Lee, S. Vafai, and J. B. Stock, Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits, EMBO J, vol.19, pp.5682-5691, 2000.

J. Wu, T. Tolstykh, J. Lee, K. Boyd, J. B. Stock et al., Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo, EMBO J, vol.19, pp.5672-5681, 2000.

R. Yan, J. Zhang, H. J. Park, E. S. Park, S. Oh et al., Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson's disease and DLB, Proc. Natl. Acad. Sci, vol.115, pp.12053-12062, 2018.

M. Baba, S. Nakajo, P. H. Tu, T. Tomita, K. Nakaya et al., Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies, Am. J. Pathol, vol.152, pp.879-884, 1998.

R. A. Crowther, R. Jakes, M. G. Spillantini, and M. Goedert, Synthetic filaments assembled from C-terminally truncated alpha-synuclein, FEBS Lett, vol.436, pp.1146-1152, 1998.

B. C. Campbell, C. A. Mclean, J. G. Culvenor, W. P. Gai, P. C. Blumbergs et al., The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson's disease, J. Neurochem, vol.76, pp.87-96, 2001.

W. Li, N. West, E. Colla, O. Pletnikova, J. C. Troncoso et al., Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations, Proc. Natl. Acad. Sci, vol.102, pp.2162-2167, 2005.

I. V. Murray, B. I. Giasson, S. M. Quinn, V. Koppaka, P. H. Axelsen et al., Role of alpha-synuclein carboxy-terminus on fibril formation in vitro, Biochemistry, vol.42, pp.8530-8540, 2003.

W. Hoyer, D. Cherny, V. Subramaniam, and T. M. Jovin, Impact of the acidic C-terminal region comprising amino acids 109-140 on alpha-synuclein aggregation in vitro, Biochemistry, vol.43, pp.16233-16242, 2004.

C. W. Liu, B. I. Giasson, K. A. Lewis, V. M. Lee, G. N. Demartino et al., A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: Implications for pathogenesis of Parkinson disease, J. Biol. Chem, vol.280, pp.22670-22678, 2005.

A. Ulusoy, F. Febbraro, P. H. Jensen, D. Kirik, and M. Romero-ramos, Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology, Eur. J. Neurosci, vol.32, pp.409-422, 2010.

A. J. Mishizen-eberz, R. P. Guttmann, B. I. Giasson, G. A. Day, R. Hodara et al., Distinct cleavage patterns of normal and pathologic forms of alphasynuclein by calpain I in vitro, J. Neurochem, vol.86, pp.836-847, 2003.

A. J. Mishizen-eberz, E. H. Norris, B. I. Giasson, R. Hodara, H. Ischiropoulos et al., Cleavage of alpha-synuclein by calpain: Potential role in degradation of fibrillized and nitrated species of alpha-synuclein, Biochemistry, vol.44, pp.7818-7829, 2005.

B. M. Dufty, L. R. Warner, S. T. Hou, S. X. Jiang, T. Gomez-isla et al., Calpain-cleavage of alpha-synuclein: Connecting proteolytic processing to diseaselinked aggregation, Am. J. Pathol, vol.170, pp.1725-1738, 2007.

A. Mahul-mellier, F. Altay, J. Burtscher, N. Maharjan, N. Ait-bouziad et al., , 2018.

M. Diepenbroek, N. Casadei, H. Esmer, T. C. Saido, J. Takano et al., Overexpression of the calpain-specific inhibitor calpastatin reduces human alpha-Synuclein processing, aggregation and synaptic impairment in [A30P]alphaSyn transgenic mice, Hum. Mol. Genet, vol.23, pp.3975-3989, 2014.

D. Games, E. Valera, B. Spencer, E. Rockenstein, M. Mante et al., Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models, J. Neurosci, vol.34, pp.9441-9454, 2014.

W. Wang, L. T. Nguyen, C. Burlak, F. Chegini, F. Guo et al., Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein alpha-synuclein, Proc. Natl. Acad. Sci, vol.113, pp.9587-9592, 2016.

A. Iwata, M. Maruyama, T. Akagi, T. Hashikawa, I. Kanazawa et al., Alpha-synuclein degradation by serine protease neurosin: Implication for pathogenesis of synucleinopathies, Hum. Mol. Genet, vol.12, pp.2625-2635, 2003.

T. Kasai, T. Tokuda, N. Yamaguchi, Y. Watanabe, F. Kametani et al., Cleavage of normal and pathological forms of alpha-synuclein by neurosin in vitro, Neurosci. Lett, vol.436, pp.52-56, 2008.

D. Sevlever, P. Jiang, and S. H. Yen, Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species, Biochemistry, vol.47, pp.9678-9687, 2008.

J. Y. Sung, S. M. Park, C. H. Lee, J. W. Um, H. J. Lee et al., Proteolytic cleavage of extracellular secreted {alpha}-synuclein via matrix metalloproteinases, J. Biol. Chem, vol.280, pp.25216-25224, 2005.

D. H. Choi, Y. J. Kim, Y. G. Kim, T. H. Joh, M. F. Beal et al., Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death, J. Biol. Chem, vol.286, pp.14168-14177, 2011.

G. W. Hart, M. P. Housley, and C. Slawson, Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins, Nature, vol.446, pp.1017-1022, 2007.

R. N. Cole and G. W. Hart, Cytosolic O-glycosylation is abundant in nerve terminals, J. Neurochem, vol.79, pp.1080-1089, 2001.

Z. Wang, N. D. Udeshi, M. O'malley, J. Shabanowitz, D. F. Hunt et al., Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry, Mol. Cell Proteom, vol.9, pp.153-160, 2010.

J. F. Alfaro, C. X. Gong, M. E. Monroe, J. T. Aldrich, T. R. Clauss et al.,

J. Shabanowitz and P. Stanley, Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets, Proc. Natl. Acad. Sci, vol.109, pp.7280-7285, 2012.

N. P. Marotta, Y. H. Lin, Y. E. Lewis, M. R. Ambroso, B. W. Zaro et al., O-GlcNAc modification blocks the aggregation and toxicity of the protein alpha-synuclein associated with Parkinson's disease, Nat. Chem, vol.7, pp.913-920, 2015.

Y. E. Lewis, A. Galesic, P. M. Levine, C. A. De-leon, N. Lamiri et al., O-GlcNAcylation of alpha-Synuclein at Serine 87 Reduces Aggregation without Affecting Membrane Binding, ACS Chem. Biol, vol.12, pp.1020-1027, 2017.

P. M. Levine, C. A. De-leon, A. Galesic, A. Balana, N. P. Marotta et al., O-GlcNAc modification inhibits the calpain-mediated cleavage of alpha-synuclein, Bioorg. Med. Chem, vol.25, pp.4977-4982, 2017.

P. M. Levine, A. Galesic, A. T. Balana, A. L. Mahul-mellier, M. X. Navarro et al., alpha-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson's disease, Proc. Natl. Acad. Sci, vol.116, pp.1511-1519, 2019.

H. G. Selnick, J. F. Hess, C. Tang, K. Liu, J. B. Schachter et al., Discovery of MK-8719, a Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies, J. Med. Chem, vol.62, pp.10062-10097, 2019.

E. Gomez-tortosa, K. Newell, M. C. Irizarry, J. L. Sanders, and B. T. Hyman, alpha-Synuclein immunoreactivity in dementia with Lewy bodies: Morphological staging and comparison with ubiquitin immunostaining, Acta Neuropathol, vol.99, pp.352-357, 2000.

M. Hasegawa, H. Fujiwara, T. Nonaka, K. Wakabayashi, H. Takahashi et al., Phosphorylated alpha-synuclein is ubiquitinated in alpha-synucleinopathy lesions, J. Biol. Chem, vol.277, pp.49071-49076, 2002.

D. M. Sampathu, B. I. Giasson, A. C. Pawlyk, J. Q. Trojanowski, and V. M. Lee, Ubiquitination of alphasynuclein is not required for formation of pathological inclusions in alpha-synucleinopathies, Am. J. Pathol, vol.163, issue.10, pp.63633-63637, 2003.

G. K. Tofaris, A. Razzaq, B. Ghetti, K. S. Lilley, and M. G. Spillantini, Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function, J. Biol. Chem, vol.278, pp.44405-44411, 2003.

X. Liu, M. Hebron, W. Shi, I. Lonskaya, and C. E. Moussa, Ubiquitin specific protease-13 independently regulates parkin ubiquitination and alpha-synuclein clearance in alpha-synucleinopathies, Hum. Mol. Genet, vol.28, pp.548-560, 2019.

Y. Shin, J. Klucken, C. Patterson, B. T. Hyman, and P. J. Mclean, The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways, J. Biol. Chem, vol.280, pp.23727-23734, 2005.

J. E. Tetzlaff, P. Putcha, T. F. Outeiro, A. Ivanov, O. Berezovska et al., CHIP targets toxic alpha-Synuclein oligomers for degradation, J. Biol. Chem, vol.283, pp.17962-17968, 2008.

J. T. Lee, T. C. Wheeler, L. Li, and L. S. Chin, Ubiquitination of alpha-synuclein by Siah-1 promotes alphasynuclein aggregation and apoptotic cell death, Hum. Mol. Genet, vol.17, pp.906-917, 2008.

G. K. Tofaris, H. T. Kim, R. Hourez, J. W. Jung, K. P. Kim et al., Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway, Proc. Natl. Acad. Sci, vol.108, pp.17004-17009, 2011.

S. E. Davies, P. J. Hallett, T. Moens, G. Smith, E. Mangano et al., Enhanced ubiquitin-dependent degradation by Nedd4 protects against alpha-synuclein accumulation and toxicity in animal models of Parkinson's disease, Neurobiol. Dis, vol.64, pp.79-87, 2014.

M. Hejjaoui, M. Haj-yahya, K. S. Kumar, A. Brik, and H. A. Lashuel, Towards elucidation of the role of ubiquitination in the pathogenesis of Parkinson's disease with semisynthetic ubiquitinated alphasynuclein, Angew Chem. Int. Ed. Engl, vol.50, pp.405-409, 2011.

F. Meier, T. Abeywardana, A. Dhall, N. P. Marotta, J. Varkey et al., site-specific ubiquitin modification of alpha-synuclein reveals differential effects on aggregation, J. Am. Chem. Soc, vol.134, pp.5468-5471, 2012.

M. Haj-yahya, B. Fauvet, Y. Herman-bachinsky, M. Hejjaoui, S. N. Bavikar et al., Synthetic polyubiquitinated alpha-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology, Proc. Natl. Acad. Sci, vol.110, pp.17726-17731, 2013.

R. Rott, R. Szargel, V. Shani, H. Hamza, M. Savyon et al., SUMOylation and ubiquitination reciprocally regulate alpha-synuclein degradation and pathological aggregation, Proc. Natl. Acad. Sci, vol.114, pp.13176-13181, 2017.

P. Krumova, E. Meulmeester, M. Garrido, M. Tirard, H. H. Hsiao et al., Sumoylation inhibits alpha-synuclein aggregation and toxicity, J. Cell Biol, vol.194, pp.49-60, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02193319

T. Abeywardana and M. R. Pratt, Extent of inhibition of alpha-synuclein aggregation in vitro by SUMOylation is conjugation site-and SUMO isoform-selective, Biochemistry, vol.54, pp.959-961, 2015.

M. D. Watson and J. C. Lee, N-Terminal Acetylation Affects alpha-Synuclein Fibril Polymorphism, Biochemistry, vol.58, pp.3630-3633, 2019.

T. F. Outeiro, E. Kontopoulos, S. M. Altmann, I. Kufareva, K. E. Strathearn et al., Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease, Science, vol.317, pp.516-519, 2007.

R. M. De-oliveira, H. Miranda, L. Francelle, R. Pinho, E. M. Szego et al., The mechanism of sirtuin 2-mediated exacerbation of alphasynuclein toxicity in models of Parkinson disease, PLoS Biol, vol.15, p.2000374, 2017.

G. Richarme, M. Mihoub, J. Dairou, L. C. Bui, T. Leger et al., Parkinsonism-associated protein DJ-1/Park7 is a major protein deglycase that repairs methylglyoxal-and glyoxal-glycated cysteine, arginine, and lysine residues, J. Biol. Chem, vol.290, pp.1885-1897, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01131011

V. Miranda, H. Szego, E. M. Oliveira, L. M. Breda, C. Darendelioglu et al., Glycation potentiates alpha-synuclein-associated neurodegeneration in synucleinopathies, vol.140, pp.1399-1419, 2017.

B. I. Giasson, J. E. Duda, I. V. Murray, Q. Chen, J. M. Souza et al., Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions, Science, vol.290, pp.985-989, 2000.

E. Sevcsik, A. J. Trexler, J. M. Dunn, and E. Rhoades, Allostery in a disordered protein: Oxidative modifications to alpha-synuclein act distally to regulate membrane binding, J. Am. Chem. Soc, vol.133, pp.7152-7158, 2011.

R. Burai, N. Ait-bouziad, A. Chiki, and H. A. Lashuel, Elucidating the Role of Site-Specific Nitration of alpha-Synuclein in the Pathogenesis of Parkinson's Disease via Protein Semisynthesis and Mutagenesis, J. Am. Chem. Soc, vol.137, pp.5041-5052, 2015.

R. Hodara, E. H. Norris, B. I. Giasson, A. J. Mishizen-eberz, D. R. Lynch et al., Functional consequences of alpha-synuclein tyrosine nitration: Diminished binding to lipid vesicles and increased fibril formation, J. Biol. Chem, vol.279, pp.47746-47753, 2004.

S. R. Danielson, J. M. Held, B. Schilling, M. Oo, B. W. Gibson et al., Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson's disease, Anal. Chem, vol.81, pp.7823-7828, 2009.

E. Masliah, E. Rockenstein, M. Mante, L. Crews, B. Spencer et al., Passive immunization reduces behavioral and neuropathological deficits in an alphasynuclein transgenic model of Lewy body disease, PLoS ONE, 2011.

D. B. Schenk, M. Koller, D. K. Ness, S. G. Griffith, M. Grundman et al., First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers, Mov. Disord, vol.32, pp.211-218, 2017.

J. Jankovic, I. Goodman, B. Safirstein, T. K. Marmon, D. B. Schenk et al., Safety and Tolerability of Multiple Ascending Doses of PRX002/RG7935, an Anti-alpha-Synuclein Monoclonal Antibody, in Patients With Parkinson Disease: A Randomized Clinical Trial, JAMA Neurol, vol.75, pp.1206-1214, 2018.

E. J. Bae, H. J. Lee, E. Rockenstein, D. H. Ho, E. B. Park et al., Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission, J. Neurosci, vol.32, pp.13454-13469, 2012.

B. Spencer, E. Valera, E. Rockenstein, C. Overk, M. Mante et al., Anti-alpha-synuclein immunotherapy reduces alpha-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy, Acta Neuropathol. Commun, vol.5, 2017.

D. J. Schofield, L. Irving, L. Calo, A. Bogstedt, G. Rees et al., Preclinical development of a high affinity alpha-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular alpha-synuclein and attenuate alpha-synuclein spreading in vivo, Neurobiol. Dis, vol.132, p.104582, 2019.

H. T. Tran, C. H. Chung, M. Iba, B. Zhang, J. Q. Trojanowski et al., Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration, Cell Rep, vol.7, pp.2054-2065, 2014.

M. Shahaduzzaman, K. Nash, C. Hudson, M. Sharif, B. Grimmig et al., Anti-human alpha-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-alpha-synuclein rat model of Parkinson's disease, PLoS ONE, vol.10, p.116841, 2015.

A. Weihofen, Y. Liu, J. W. Arndt, C. Huy, C. Quan et al., Development of an aggregate-selective, human-derived alpha-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models, Neurobiol. Dis, vol.124, pp.276-288, 2019.

M. Brys, L. Fanning, S. Hung, A. Ellenbogen, N. Penner et al., Randomized phase I clinical trial of anti-alpha-synuclein antibody BIIB054, Mov. Disord, vol.34, pp.1154-1163, 2019.

T. Nasstrom, S. Goncalves, C. Sahlin, E. Nordstrom, V. Screpanti-sundquist et al., Antibodies against alpha-synuclein reduce oligomerization in living cells, PLoS ONE, 2011.

T. Fagerqvist, V. Lindstrom, E. Nordstrom, A. Lord, S. M. Tucker et al., Monoclonal antibodies selective for alpha-synuclein oligomers/protofibrils recognize brain pathology in Lewy body disorders and alpha-synuclein transgenic mice with the disease-causing A30P mutation, J. Neurochem, vol.126, pp.131-144, 2013.

V. Lindstrom, T. Fagerqvist, E. Nordstrom, F. Eriksson, A. Lord et al., Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] alpha-synuclein mice, Neurobiol. Dis, vol.69, pp.134-143, 2014.

O. El-agnaf, C. Overk, E. Rockenstein, M. Mante, J. Florio et al., Differential effects of immunotherapy with antibodies targeting alpha-synuclein oligomers and fibrils in a transgenic model of synucleinopathy, Neurobiol. Dis, vol.104, pp.85-96, 2017.

E. Masliah, E. Rockenstein, A. Adame, M. Alford, L. Crews et al., Effects of alpha-synuclein immunization in a mouse model of Parkinson's disease, Neuron, vol.46, pp.857-868, 2005.

A. Ghochikyan, I. Petrushina, H. Davtyan, A. Hovakimyan, T. Saing et al., Immunogenicity of epitope vaccines targeting different B cell antigenic determinants of human alpha-synuclein: Feasibility study, Neurosci. Lett, vol.560, pp.86-91, 2014.

M. Mandler, E. Valera, E. Rockenstein, H. Weninger, C. Patrick et al., Next-generation active immunization approach for synucleinopathies: Implications for Parkinson's disease clinical trials, Acta Neuropathol, vol.127, pp.861-879, 2014.

E. Valera and E. Masliah, Immunotherapy for neurodegenerative diseases: Focus on alpha-synucleinopathies, Pharm. Ther, vol.138, pp.311-322, 2013.

A. Schneeberger, L. Tierney, and M. Mandler, Active immunization therapies for Parkinson's disease and multiple system atrophy, Mov. Disord, vol.31, pp.214-224, 2016.

T. Fernandez-valle, I. Gabilondo, and J. Gomez-esteban, New therapeutic approaches to target alphasynuclein in Parkinson's disease: The role of immunotherapy, Int. Rev. Neurobiol, vol.146, pp.281-295, 2019.

E. Rockenstein, G. Ostroff, F. Dikengil, F. Rus, M. Mante et al., Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies, J. Neurosci, vol.38, pp.1000-1014, 2018.

K. E. Ugen, X. Lin, G. Bai, Z. Liang, J. Cai et al., Evaluation of an alpha synuclein sensitized dendritic cell based vaccine in a transgenic mouse model of Parkinson disease, Hum. Vaccin Immunother, vol.11, pp.922-930, 2015.

Y. Zheng, J. Qu, F. Xue, Y. Zheng, B. Yang et al., Novel DNA Aptamers for Parkinson's Disease Treatment Inhibit alpha-Synuclein Aggregation and Facilitate its Degradation, Mol. Therapy Nucleic Acids, vol.11, pp.228-242, 2018.

X. Ren, Y. Zhao, F. Xue, Y. Zheng, H. Huang et al., Exosomal DNA Aptamer Targeting alpha-Synuclein Aggregates Reduced Neuropathological Deficits in a Mouse Parkinson's Disease Model, Mol. Therapy Nucleic Acids, vol.17, pp.726-740, 2019.

S. Kwon, M. Iba, E. Masliah, and C. Kim, Targeting Microglial and Neuronal Toll-like Receptor 2 in Synucleinopathies, Exp. Neurobiol, vol.28, pp.547-553, 2019.

C. Kim, E. Rockenstein, B. Spencer, H. K. Kim, A. Adame et al., Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy, Cell Rep, vol.13, pp.771-782, 2015.

C. Kim, B. Spencer, E. Rockenstein, H. Yamakado, M. Mante et al., Immunotherapy targeting toll-like receptor 2 alleviates neurodegeneration in models of synucleinopathy by modulating alpha-synuclein transmission and neuroinflammation, Mol. Neurodegener, vol.13, p.43, 2018.

A. Messer and D. C. Butler, Optimizing intracellular antibodies (intrabodies/nanobodies) to treat neurodegenerative disorders, Neurobiol. Dis, vol.2020, p.104619

B. Yuan and M. R. Sierks, Intracellular targeting and clearance of oligomeric alpha-synuclein alleviates toxicity in mammalian cells, Neurosci. Lett, vol.459, pp.16-18, 2009.

S. P. Mahajan, B. Meksiriporn, D. Waraho-zhmayev, K. B. Weyant, I. Kocer et al., Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein, Sci. Rep, vol.8, p.17611, 2018.

S. M. Lynch, C. Zhou, and A. Messer, An scFv intrabody against the nonamyloid component of alpha-synuclein reduces intracellular aggregation and toxicity, J. Mol. Biol, vol.377, pp.136-147, 2008.

F. El-turk, E. De-genst, T. Guilliams, B. Fauvet, M. Hejjaoui et al., Exploring the role of post-translational modifications in regulating alpha-synuclein interactions by studying the effects of phosphorylation on nanobody binding, Protein Sci, vol.27, pp.1262-1274, 2018.

D. C. Butler, S. N. Joshi, E. Genst, A. S. Baghel, C. M. Dobson et al., Bifunctional Anti-Non-Amyloid Component alpha-Synuclein Nanobodies Are Protective In Situ, PLoS ONE, vol.11, p.165964, 2016.

D. Chatterjee, M. Bhatt, D. Butler, E. De-genst, C. M. Dobson et al., Proteasometargeted nanobodies alleviate pathology and functional decline in an alpha-synuclein-based Parkinson's disease model, NPJ Parkinsons Dis, 2018.

A. Atik, T. Stewart, and J. Zhang, Alpha-Synuclein as a Biomarker for Parkinson's Disease, Brain Pathol, vol.26, pp.410-418, 2016.

A. Attar, W. T. Chan, F. G. Klarner, T. Schrader, and G. Bitan, Safety and pharmacological characterization of the molecular tweezer CLR01-A broad-spectrum inhibitor of amyloid proteins' toxicity, BMC Pharm. Toxicol, vol.15, p.23, 2014.

I. Hadrovic, P. Rebmann, F. G. Klarner, G. Bitan, and T. Schrader, Molecular Lysine Tweezers Counteract Aberrant Protein Aggregation, Front. Chem, vol.7, p.657, 2019.

S. Prabhudesai, S. Sinha, A. Attar, A. Kotagiri, A. G. Fitzmaurice et al., A novel "molecular tweezer" inhibitor of alpha-synuclein neurotoxicity in vitro and in vivo, Neurotherapeutics, vol.9, pp.464-476, 2012.

S. Acharya, B. M. Safaie, P. Wongkongkathep, M. I. Ivanova, A. Attar et al., Molecular basis for preventing alpha-synuclein aggregation by a molecular tweezer, J. Biol. Chem, vol.289, pp.10727-10737, 2014.

F. Richter, S. R. Subramaniam, I. Magen, P. Lee, J. Hayes et al., A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing alpha-Synuclein, Neurotherapeutics, vol.14, pp.1107-1119, 2017.

H. Li, D. Lin, X. Luo, F. Zhang, L. Ji et al., Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration, FEBS J, vol.272, pp.3661-3672, 2005.

D. Latawiec, F. Herrera, A. Bek, V. Losasso, M. Candotti et al., Modulation of alpha-synuclein aggregation by dopamine analogs, PLoS ONE, vol.5, p.9234, 2010.

D. Yedlapudi, G. S. Joshi, D. Luo, S. V. Todi, and A. K. Dutta, Inhibition of alpha-synuclein aggregation by multifunctional dopamine agonists assessed by a novel in vitro assay and an in vivo Drosophila synucleinopathy model, Sci. Rep, vol.6, 2016.

L. Fernandes, N. Moraes, F. S. Sagrillo, A. V. Magalhaes, M. C. De-moraes et al., An ortho-Iminoquinone Compound Reacts with Lysine Inhibiting Aggregation while Remodeling Mature Amyloid Fibrils, ACS Chem. Neurosci, vol.8, pp.1704-1712, 2017.

J. M. Boettcher, K. L. Hartman, D. T. Ladror, Z. Qi, W. S. Woods et al., Membraneinduced folding of the cAMP-regulated phosphoprotein endosulfine-alpha, Biochemistry, vol.47, pp.12357-12364, 2008.

W. S. Woods, J. M. Boettcher, D. H. Zhou, K. D. Kloepper, K. L. Hartman et al., Conformation-specific binding of alpha-synuclein to novel protein partners detected by phage display and NMR spectroscopy, J. Biol. Chem, vol.282, pp.34555-34567, 2007.

D. Ysselstein, B. Dehay, I. M. Costantino, G. P. Mccabe, M. P. Frosch et al., Endosulfine-alpha inhibits membrane-induced alpha-synuclein aggregation and protects against alphasynuclein neurotoxicity, Acta Neuropathol. Commun, vol.5, 2017.

L. Tatenhorst, K. Eckermann, V. Dambeck, L. Fonseca-ornelas, H. Walle et al., Fasudil attenuates aggregation of ?-synuclein in models of Parkinson's disease, Acta Neuropathol. Commun, vol.4, 2016.

W. Wrasidlo, I. F. Tsigelny, D. L. Price, G. Dutta, E. Rockenstein et al., Ade novocompound targeting ?-synuclein improves deficits in models of Parkinson's disease, Brain, vol.139, pp.3217-3236, 2016.

D. L. Price, M. A. Koike, A. Khan, W. Wrasidlo, E. Rockenstein et al., The small molecule alpha-synuclein misfolding inhibitor, NPT200-11, produces multiple benefits in an animal model of Parkinson's disease, Sci. Rep, vol.8, 2018.

J. Wagner, S. Ryazanov, A. Leonov, J. Levin, S. Shi et al., Anle138b: A novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease, Acta Neuropathol, vol.125, pp.795-813, 2013.

J. Levin, F. Schmidt, C. Boehm, C. Prix, K. Botzel et al., The oligomer modulator anle138b inhibits disease progression in a Parkinson mouse model even with treatment started after disease onset, Acta Neuropathol, vol.127, pp.779-780, 2014.

M. Wegrzynowicz, D. Bar-on, &. Calo, L. Anichtchik, O. Iovino et al., Depopulation of dense ?-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model, Acta Neuropathol, vol.138, pp.575-595, 2019.

H. Saibil, Chaperone machines for protein folding, unfolding and disaggregation, Nat. Rev. Mol. Cell Biol, vol.14, pp.630-642, 2013.

K. Uryu, C. Richter-landsberg, W. Welch, E. Sun, O. Goldbaum et al., Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies, Am. J. Pathol, vol.168, pp.947-961, 2006.

K. M. Danzer, W. P. Ruf, P. Putcha, D. Joyner, T. Hashimoto et al., Heatshock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity, FASEB J, vol.25, pp.326-336, 2011.

T. R. Flower, L. S. Chesnokova, C. A. Froelich, C. Dixon, and S. N. Witt, Heat shock prevents alpha-synucleininduced apoptosis in a yeast model of Parkinson's disease, J. Mol. Biol, vol.351, pp.1081-1100, 2005.

P. K. Auluck and N. M. Bonini, Pharmacological prevention of Parkinson disease in Drosophila, Nat. Med, vol.8, pp.1185-1186, 2002.

P. K. Auluck, H. Y. Chan, J. Q. Trojanowski, V. M. Lee, and N. M. Bonini, Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson's disease, Science, vol.295, pp.865-868, 2002.

P. K. Auluck, M. C. Meulener, and N. M. Bonini, Mechanisms of Suppression of {alpha}-Synuclein Neurotoxicity by Geldanamycin in Drosophila, J. Biol. Chem, vol.280, pp.2873-2878, 2005.

H. Shen, J. He, Y. Wang, Q. Huang, and J. Chen, Geldanamycin Induces Heat Shock Protein 70 and Protects against MPTP-induced Dopaminergic Neurotoxicity in Mice, J. Biol. Chem, vol.280, pp.39962-39969, 2005.

J. Liu, J. P. Zhang, M. Shi, T. Quinn, J. Bradner et al., Rab11a and HSP90 Regulate Recycling of Extracellular [alpha]-Synuclein, J. Neurosci, vol.29, pp.1480-1485, 2009.

P. Putcha, K. M. Danzer, L. R. Kranich, A. Scott, M. Silinski et al., Brain-Permeable Small-Molecule Inhibitors of Hsp90 Prevent ?-Synuclein Oligomer Formation and Rescue ?-Synuclein-Induced Toxicity, J. Pharmacol. Exp. Ther, vol.332, pp.849-857, 2010.

H. E. Gendelman, M. Riedel, O. Goldbaum, L. Schwarz, S. Schmitt et al., 17-AAG Induces Cytoplasmic ?-Synuclein Aggregate Clearance by Induction of Autophagy, PLoS ONE, vol.5, p.8753, 2010.

S. F. Falsone, A. J. Kungl, A. Rek, R. Cappai, and K. Zangger, The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein, J. Biol. Chem, vol.284, pp.31190-31199, 2009.

J. Klucken, Y. Shin, E. Masliah, B. T. Hyman, and P. J. Mclean, Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity, J. Biol. Chem, vol.279, pp.25497-25502, 2004.

F. Yu, H. Xu, M. Zhuo, L. Sun, A. Dong et al., Impairment of redox state and dopamine level induced by alpha-synuclein aggregation and the prevention effect of hsp70, Biochem. Biophys. Res. Commun, vol.331, pp.278-284, 2005.

T. F. Outeiro and A. Kazantsev, Drug Targeting of alpha-Synuclein Oligomerization in Synucleinopathies, Perspect Med. Chem, vol.2, pp.41-49, 2008.

P. J. Mclean, J. Klucken, Y. Shin, and B. T. Hyman, Geldanamycin induces Hsp70 and prevents alphasynuclein aggregation and toxicity in vitro, Biochem. Biophys. Res. Commun, vol.321, pp.665-669, 2004.

K. Kilpatrick, J. A. Novoa, T. Hancock, C. J. Guerriero, P. Wipf et al., Chemical induction of Hsp70 reduces alpha-synuclein aggregation in neuroglioma cells, ACS Chem. Biol, vol.8, pp.1460-1468, 2013.

L. V. Kalia, S. K. Kalia, H. Chau, A. M. Lozano, B. T. Hyman et al., Ubiquitinylation of alphasynuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5), PLoS ONE, 2011.

Z. Dong, D. P. Wolfer, H. P. Lipp, and H. Bueler, Hsp70 gene transfer by adeno-associated virus inhibits MPTPinduced nigrostriatal degeneration in the mouse model of Parkinson disease, Mol. Therapy, vol.11, pp.80-88, 2005.

M. M. Dedmon, J. Christodoulou, M. R. Wilson, and C. M. Dobson, Heat shock protein 70 inhibits alphasynuclein fibril formation via preferential binding to prefibrillar species, J. Biol. Chem, vol.280, pp.14733-14740, 2005.

C. Huang, H. Cheng, S. Hao, H. Zhou, X. Zhang et al., Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates, J. Mol. Biol, vol.364, pp.323-336, 2006.

K. C. Luk, I. P. Mills, J. Q. Trojanowski, and V. M. Lee, Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly, Biochemistry, vol.47, pp.12614-12625, 2008.

C. Lo-bianco, J. Shorter, E. Regulier, H. Lashuel, T. Iwatsubo et al., Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease, J. Clin. Invest, vol.118, pp.3087-3097, 2008.

Y. V. Taguchi, E. L. Gorenberg, M. Nagy, D. Thrasher, W. A. Fenton et al., Hsp110 mitigates ?-synuclein pathology in vivo, Proc. Natl. Acad. Sci, vol.116, pp.24310-24316, 2019.

K. Beyer, M. Domingo-sàbat, and A. Ariza, Molecular pathology of Lewy body diseases, Int. J. Mol. Sci, vol.10, pp.724-745, 2009.

J. L. Webb, B. Ravikumar, J. Atkins, J. N. Skepper, and D. C. Rubinsztein, ?-Synuclein Is Degraded by Both Autophagy and the Proteasome, J. Biol. Chem, vol.278, pp.25009-25013, 2003.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired Degradation of Mutant ?-Synuclein by Chaperone-Mediated Autophagy, Science, vol.305, p.1292, 2004.

H. Lee, F. Khoshaghideh, S. Patel, and S. Lee, Clearance of ?-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway, J. Neurosci, vol.24, p.1888, 2004.

.. P. St, K. Mcnaught, R. Belizaire, O. Isacson, P. Jenner et al., Altered Proteasomal Function in Sporadic Parkinson's Disease, Exp. Neurol, vol.179, pp.38-46, 2003.

M. Martinez-vicente and M. Vila, Alpha-synuclein and protein degradation pathways in Parkinson's disease: A pathological feed-back loop, Exp. Neurol, vol.247, pp.308-313, 2013.

H. J. Rideout, K. E. Larsen, D. Sulzer, and L. Stefanis, Proteasomal inhibition leads to formation of ubiquitin/?synuclein-immunoreactive inclusions in PC12 cells, J. Neurochem, vol.78, pp.899-908, 2001.

E. Emmanouilidou, L. Stefanis, and K. Vekrellis, Cell-produced ?-synuclein oligomers are targeted to, and impair, the 26S proteasome, Neurobiol. Aging, vol.31, pp.953-968, 2010.

H. Snyder, K. Mensah, C. Theisler, J. Lee, A. Matouschek et al., Aggregated and Monomeric ?-Synuclein Bind to the S6? Proteasomal Protein and Inhibit Proteasomal Function, J. Biol. Chem, vol.278, pp.11753-11759, 2003.

F. K. Lee, A. K. Wong, Y. W. Lee, O. W. Wan, H. Y. Edwin-chan et al., The role of ubiquitin linkages on ?-synuclein induced-toxicity in aDrosophilamodel of Parkinson's disease, J. Neurochem, vol.110, pp.208-219, 2009.

S. Wang, H. He, L. Chen, W. Zhang, X. Zhang et al., Protective effects of salidroside in the MPTP/MPP(+)-induced model of Parkinson's disease through ROS-NO-related mitochondrion pathway, Mol. Neurobiol, vol.51, pp.718-728, 2015.

T. Li, Y. Feng, R. Yang, L. Wu, R. Li et al., Salidroside Promotes the Pathological alpha-Synuclein Clearance Through Ubiquitin-Proteasome System in SH-SY5Y Cells, Front. Pharm, vol.9, p.377, 2018.

Y. Leestemaker, A. De-jong, K. F. Witting, R. Penning, K. Schuurman et al., Proteasome Activation by Small Molecules. Cell Chem. Biol, vol.24, pp.725-736, 2017.

H. Zhou, M. Shao, B. Guo, C. Li, Y. Lu et al.,

H. Li, Q. Zhu, and H. Zhong, Tetramethylpyrazine Analogue T-006 Promotes the Clearance of Alpha-synuclein by Enhancing Proteasome Activity in Parkinson's Disease Models, Neurotherapeutics, 2019.

D. Ebrahimi-fakhari, I. Cantuti-castelvetri, Z. Fan, E. Rockenstein, E. Masliah et al., Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of ?-synuclein, J. Neurosci. Off. J. Soc. Neurosci, vol.31, pp.14508-14520, 2011.

S. K. Mak, A. L. Mccormack, A. B. Manning-bog, A. M. Cuervo, and D. A. Di-monte, Lysosomal degradation of alpha-synuclein in vivo, J. Biol. Chem, vol.285, pp.13621-13629, 2010.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells, J. Biol. Chem, vol.283, pp.23542-23556, 2008.

L. Alvarez-erviti, M. C. Rodriguez-oroz, J. M. Cooper, C. Caballero, I. Ferrer et al., Chaperone-mediated autophagy markers in Parkinson disease brains, Arch. Neurol, vol.67, pp.1464-1472, 2010.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, A. S. Spiro, A. Furuta et al., Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease, Mov. Disord, vol.30, pp.1639-1647, 2015.

M. Martinez-vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli et al., Dopamine-modified alpha-synuclein blocks chaperonemediated autophagy, J. Clin. Invest, vol.118, pp.777-788, 2008.

M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, PLoS ONE, vol.4, p.5515, 2009.

Q. Yang, H. She, M. Gearing, E. Colla, M. Lee et al., Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy, Science, vol.323, pp.124-127, 2009.

M. Xilouri, O. R. Brekk, N. Landeck, P. M. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration, Brain, vol.136, pp.2130-2146, 2013.

J. Anguiano, T. P. Garner, M. Mahalingam, B. C. Das, E. Gavathiotis et al., Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives, Nat. Chem. Biol, vol.9, pp.374-382, 2013.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, M. C. Rodriguez-oroz, J. A. Obeso et al., Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis, 2013.

C. Su, X. Yang, and J. Lou, Geniposide reduces alpha-synuclein by blocking microRNA-21/lysosomeassociated membrane protein 2A interaction in Parkinson disease models, Brain Res, vol.1644, pp.98-106, 2016.

S. K. Khoo, L. A. Neuman, L. Forsgren, D. Petillo, and P. Brundin, Could miRNA expression changes be a reliable clinical biomarker for Parkinson's disease?, Neurodegener. Dis. Manag, vol.3, pp.455-465, 2013.

B. Dehay, J. Bove, N. Rodriguez-muela, C. Perier, A. Recasens et al., Pathogenic lysosomal depletion in Parkinson's disease, J. Neurosci, vol.30, pp.12535-12544, 2010.

Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions, Neurobiol. Dis, vol.35, pp.385-398, 2009.

B. Dehay, A. Ramirez, M. Martinez-vicente, C. Perier, M. H. Canron et al., Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration, Proc. Natl. Acad. Sci, vol.109, pp.9611-9616, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01290058

K. E. Murphy, L. Cottle, A. M. Gysbers, A. A. Cooper, and G. M. Halliday, ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies, Acta Neuropathol. Commun, vol.1, pp.11-11, 2013.

D. Chiasserini, S. Paciotti, P. Eusebi, E. Persichetti, A. Tasegian et al.,

, Parkinson's disease and dementia with Lewy bodies, Mol. Neurodegener, vol.10, p.15, 2015.

T. E. Moors, S. Paciotti, A. Ingrassia, M. Quadri, G. Breedveld et al., Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson's Disease and Dementia with Lewy Bodies, Mol. Neurobiol, vol.56, pp.1344-1355, 2019.

A. L. Gündner, G. Duran-pacheco, S. Zimmermann, I. Ruf, T. Moors et al., Path mediation analysis reveals GBA impacts Lewy body disease status by increasing ?-synuclein levels, Neurobiol. Dis, vol.121, pp.205-213, 2019.

S. Sato, T. Uchihara, T. Fukuda, S. Noda, H. Kondo et al., Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice, Sci. Rep, 2018.

A. R. Winslow, C. W. Chen, S. Corrochano, A. Acevedo-arozena, D. E. Gordon et al., alpha-Synuclein impairs macroautophagy: Implications for Parkinson's disease, J. Cell Biol, vol.190, pp.1023-1037, 2010.

J. X. Song, J. H. Lu, L. F. Liu, L. L. Chen, S. S. Durairajan et al., HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: A process modulated by the natural autophagy inducer corynoxine B, Autophagy, vol.10, pp.144-154, 2014.

A. N. Stefanovic, M. T. Stockl, M. M. Claessens, and V. Subramaniam, Synuclein oligomers distinctively permeabilize complex model membranes, FEBS J, vol.281, pp.2838-2850, 2014.

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy, PLoS ONE, vol.5, p.9313, 2010.

X. Bai, M. C. Wey, .. Fernandez, E. Hart, M. J. Gelfond et al., Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy, Pathobiol. Aging Age Relat. Dis, vol.5, p.28743, 2015.

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity, Proc. Natl. Acad. Sci, vol.110, pp.1817-1826, 2013.

J. Bove, M. Martinez-vicente, and M. Vila, Fighting neurodegeneration with rapamycin: Mechanistic insights, Nat. Rev. Neurosci, vol.12, pp.437-452, 2011.

Y. J. Guo, S. Y. Dong, X. X. Cui, Y. Feng, T. Liu et al., Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of alpha-synuclein via SIRT1-deacetylated LC3, Mol. Nutr Food Res, vol.60, pp.2161-2175, 2016.

Z. H. Wang, J. L. Zhang, Y. L. Duan, Q. S. Zhang, G. F. Li et al., MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting alpha-synuclein expression in MPTP-induced Parkinson's disease mouse, Biomed. Pharm, vol.74, pp.252-256, 2015.

F. Wu, H. D. Xu, J. J. Guan, Y. S. Hou, J. H. Gu et al., Rotenone impairs autophagic flux and lysosomal functions in Parkinson's disease, Neuroscience, vol.284, pp.900-911, 2015.

M. Sardiello, M. Palmieri, A. Di-ronza, D. L. Medina, M. Valenza et al., Gene Network Regulating Lysosomal Biogenesis and Function. Science, vol.325, pp.473-477, 2009.

C. Settembre and A. Ballabio, TFEB regulates autophagy: An integrated coordination of cellular degradation and recycling processes, Autophagy, vol.7, pp.1379-1381, 2011.

C. Settembre, C. Di-malta, V. A. Polito, M. Garcia-arencibia, F. Vetrini et al., TFEB links autophagy to lysosomal biogenesis, vol.332, pp.1429-1433, 2011.

C. Settembre, R. Zoncu, D. L. Medina, F. Vetrini, S. Erdin et al., A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB, EMBO J, vol.31, pp.1095-1108, 2012.

H. Martini-stoica, Y. Xu, A. Ballabio, and H. Zheng, The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective, Trends Neurosci, vol.39, pp.221-234, 2016.

M. Arotcarena, M. Bourdenx, N. Dutheil, M. Thiolat, E. Doudnikoff et al., Transcription factor EB overexpression prevents neurodegeneration in experimental synucleinopathies, JCI Insight, vol.4, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346929

A. Torra, A. Parent, T. Cuadros, B. Rodriguez-galvan, E. Ruiz-bronchal et al., Overexpression of TFEB Drives a Pleiotropic Neurotrophic Effect and Prevents Parkinson's Disease-Related Neurodegeneration, Mol. Therapy, vol.26, pp.1552-1567, 2018.

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, PLoS ONE, vol.10, p.120819, 2015.

W. Song, F. Wang, P. Lotfi, M. Sardiello, and L. Segatori, 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: Implications for therapy, J. Biol. Chem, vol.289, pp.10211-10222, 2014.

S. Tan, C. Y. Yu, Z. W. Sim, Z. S. Low, B. Lee et al., Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy, Sci. Rep, vol.9, p.727, 2019.

D. M. Lan, F. T. Liu, J. Zhao, Y. Chen, J. J. Wu et al., Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant alpha-synuclein, Neurochem. Res, vol.37, pp.2025-2032, 2012.

S. Sarkar, J. E. Davies, Z. Huang, A. Tunnacliffe, and D. C. Rubinsztein, Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein, J. Biol. Chem, vol.282, pp.5641-5652, 2007.

A. C. Hoffmann, G. Minakaki, S. Menges, R. Salvi, S. Savitskiy et al., Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose, Sci. Rep, vol.9, p.544, 2019.

K. Tanji, Y. Miki, A. Maruyama, J. Mimura, T. Matsumiya et al., Trehalose intake induces chaperone molecules along with autophagy in a mouse model of Lewy body disease, Biochem. Biophys. Res. Commun, vol.465, pp.746-752, 2015.

B. J. Debosch, M. R. Heitmeier, A. L. Mayer, C. B. Higgins, J. R. Crowley et al., Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis, Sci. Signal, vol.9, pp.21-21, 2016.

P. A. Howson, T. H. Johnston, P. Ravenscroft, M. P. Hill, J. Su et al., Beneficial Effects of Trehalose on Striatal Dopaminergic Deficits in Rodent and Primate Models of Synucleinopathy in Parkinson's Disease, J. Pharm. Exp. Ther, vol.369, pp.364-374, 2019.

M. L. Hebron, I. Lonskaya, and C. E. Moussa, Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of alpha-synuclein in Parkinson's disease models, Hum. Mol. Genet, vol.22, pp.3315-3328, 2013.

A. L. Mahul-mellier, B. Fauvet, A. Gysbers, I. Dikiy, A. Oueslati et al., c-Abl phosphorylates alpha-synuclein and regulates its degradation: Implication for alpha-synuclein clearance and contribution to the pathogenesis of Parkinson's disease, Hum. Mol. Genet, vol.23, pp.2858-2879, 2014.

F. Pagan, M. Hebron, E. H. Valadez, Y. Torres-yaghi, X. Huang et al., Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies, J. Parkinson's Dis, vol.6, pp.503-517, 2016.

F. L. Pagan, M. L. Hebron, B. Wilmarth, Y. Torres-yaghi, A. Lawler et al., Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson's disease, Pharmacol. Res. Perspect, vol.7, p.470, 2019.

B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick et al., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases, J. Neurosci, vol.29, pp.13578-13588, 2009.

K. Wang, J. Huang, W. Xie, L. Huang, C. Zhong et al., Beclin1 and HMGB1 ameliorate the alphasynuclein-mediated autophagy inhibition in PC12 cells, Diagn. Pathol, vol.11, p.15, 2016.

J. H. Lu, J. Q. Tan, S. S. Durairajan, L. F. Liu, Z. H. Zhang et al., Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy, Autophagy, vol.8, pp.98-108, 2012.

J. V. Higdon and B. Frei, Coffee and Health: A Review of Recent Human Research, Crit. Rev. Food Sci. Nutr, vol.46, pp.101-123, 2006.

Y. Luan, X. Ren, W. Zheng, Z. Zeng, Y. Guo et al., Chronic Caffeine Treatment Protects Against alpha-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum, Front. Neurosci, vol.12, p.301, 2018.

G. Ambrosi, C. Ghezzi, R. Zangaglia, G. Levandis, C. Pacchetti et al., Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells, Neurobiol. Dis, vol.82, pp.235-242, 2015.

A. Mcneill, J. Magalhaes, C. Shen, K. Chau, D. Hughes et al., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, vol.137, pp.1481-1495, 2014.

S. P. Sardi, J. Clarke, C. Kinnecom, T. J. Tamsett, L. Li et al., CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy, Proc. Natl. Acad. Sci, vol.108, pp.12101-12106, 2011.

M. E. Gegg, D. Burke, S. J. Heales, J. M. Cooper, J. Hardy et al., Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains, Ann. Neurol, vol.72, pp.455-463, 2012.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, N. Tayebi, W. S. Kim et al., Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease, Brain, vol.137, pp.834-848, 2014.

J. R. Mazzulli, Y. H. Xu, Y. Sun, A. L. Knight, P. J. Mclean et al., Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, vol.146, pp.37-52, 2011.

F. Zunke, A. C. Moise, N. R. Belur, E. Gelyana, I. Stojkovska et al., Reversible Conformational Conversion of alpha-Synuclein into Toxic Assemblies by Glucosylceramide, Neuron, vol.97, pp.92-107, 2018.

M. X. Henderson, S. Sedor, I. Mcgeary, E. J. Cornblath, C. Peng et al., Glucocerebrosidase Activity Modulates Neuronal Susceptibility to Pathological alpha-Synuclein Insult, Neuron, 2019.

J. R. Mazzulli, F. Zunke, O. Isacson, and L. Studer, Krainc, D. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models, Proc. Natl. Acad. Sci, vol.113, pp.1931-1936, 2016.

J. Do, C. Mckinney, P. Sharma, and E. Sidransky, Glucocerebrosidase and its relevance to Parkinson disease, Mol. Neurodegener, vol.14, p.36, 2019.

A. Migdalska-richards, L. Daly, E. Bezard, and A. H. Schapira, Ambroxol effects in glucocerebrosidase and alpha-synuclein transgenic mice, Ann. Neurol, vol.80, pp.766-775, 2016.

A. Narita, K. Shirai, S. Itamura, A. Matsuda, A. Ishihara et al., Ambroxol chaperone therapy for neuronopathic Gaucher disease: A pilot study, Ann. Clin. Transl. Neurol, vol.3, pp.200-215, 2016.

C. R. Silveira, J. Mackinley, K. Coleman, Z. Li, E. Finger et al., Ambroxol as a novel disease-modifying treatment for Parkinson's disease dementia: Protocol for a single-centre, randomized, double-blind, placebo-controlled trial, BMC Neurol, 1920.

S. Mullin, L. Smith, K. Lee, G. Souza, P. Woodgate et al., Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial, JAMA Neurol, vol.2020

R. A. Steet, S. Chung, B. Wustman, A. Powe, H. Do et al., The iminosugar isofagomine increases the activity of N370S mutant acid ?-glucosidase in Gaucher fibroblasts by several mechanisms, Proc. Natl. Acad. Sci, vol.103, p.13813, 2006.

R. Khanna, E. R. Benjamin, L. Pellegrino, A. Schilling, B. A. Rigat et al., The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of beta-glucosidase, FEBS J, vol.277, pp.1618-1638, 2010.

Y. Sun, B. Liou, Y. H. Xu, B. Quinn, W. Zhang et al., Ex vivo and in vivo effects of isofagomine on acid beta-glucosidase variants and substrate levels in Gaucher disease, J. Biol. Chem, vol.287, pp.4275-4287, 2012.

C. Yang, S. Rahimpour, J. Lu, K. Pacak, B. Ikejiri et al., Histone deacetylase inhibitors increase glucocerebrosidase activity in Gaucher disease by modulation of molecular chaperones, Proc. Natl. Acad. Sci, vol.110, pp.966-971, 2013.

F. Richter, S. M. Fleming, M. Watson, V. Lemesre, L. Pellegrino et al., A GCase chaperone improves motor function in a mouse model of synucleinopathy, Neurotherapeutics, vol.11, pp.840-856, 2014.

E. Aflaki, D. K. Borger, N. Moaven, B. K. Stubblefield, S. A. Rogers et al., A New Glucocerebrosidase Chaperone Reduces alpha-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism, J. Neurosci, vol.36, pp.7441-7452, 2016.

J. R. Mazzulli, F. Zunke, T. Tsunemi, N. J. Toker, S. Jeon et al., Activation of beta-Glucocerebrosidase Reduces Pathological alpha-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons, J. Neurosci, vol.36, pp.7693-7706, 2016.

L. F. Burbulla, S. Jeon, J. Zheng, P. Song, R. B. Silverman et al., A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson's disease, Sci. Transl. Med, p.11, 2019.

L. Qiao, S. Hamamichi, K. A. Caldwell, G. A. Caldwell, T. A. Yacoubian et al., Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity, Mol. Brain, vol.1, p.17, 2008.

A. B. Pupyshev, M. A. Tikhonova, A. A. Akopyan, M. V. Tenditnik, N. I. Dubrovina et al., Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson's disease, Pharm. Biochem. Behav, vol.177, pp.1-11, 2019.

P. K. Singh, V. Kotia, D. Ghosh, G. M. Mohite, A. Kumar et al., Curcumin modulates alpha-synuclein aggregation and toxicity, ACS Chem. Neurosci, vol.4, pp.393-407, 2013.

K. Ono and M. Yamada, Antioxidant compounds have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro, J. Neurochem, vol.97, pp.105-115, 2006.

H. Shoval, L. Weiner, E. Gazit, M. Levy, I. Pinchuk et al., Polyphenol-induced dissociation of various amyloid fibrils results in a methionine-independent formation of ROS, Biochim. Biophys. Acta (BBA) Proteins Proteom, vol.1784, pp.1570-1577, 2008.

N. K. Bhatia, A. Srivastava, N. Katyal, N. Jain, M. A. Khan et al., Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity, Biochim. Biophys. Acta, vol.1854, pp.426-436, 2015.

B. Ahmad and L. J. Lapidus, Curcumin Prevents Aggregation in ?-Synuclein by Increasing Reconfiguration Rate, J. Biol. Chem, vol.287, pp.9193-9199, 2012.

S. Gautam, S. Karmakar, R. Batra, P. Sharma, P. Pradhan et al., Polyphenols in combination with ?-cyclodextrin can inhibit and disaggregate ?-synuclein amyloids under cell mimicking conditions: A promising therapeutic alternative, Biochim. Biophys. Acta (BBA) Proteins Proteom, vol.1865, pp.589-603, 2017.

O. Tavassoly, J. Kakish, S. Nokhrin, O. Dmitriev, and J. S. Lee, The use of nanopore analysis for discovering drugs which bind to ?-synuclein for treatment of Parkinson's disease, Eur. J. Med. Chem, vol.88, pp.42-54, 2014.

M. S. Wang, S. Boddapati, S. Emadi, and M. R. Sierks, Curcumin reduces ?-synuclein induced cytotoxicity in Parkinson's disease cell model, BMC Neurosci, vol.11, 2010.

Z. Liu, Y. Yu, X. Li, C. A. Ross, and W. W. Smith, Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism, Pharmacol. Res, vol.63, pp.439-444, 2011.

K. J. Spinelli, V. R. Osterberg, C. K. Meshul, A. Soumyanath, and V. K. Unni, Curcumin Treatment Improves Motor Behavior in alpha-Synuclein Transgenic Mice, PLoS ONE, vol.10, p.128510, 2015.

N. Sharma and B. Nehru, Curcumin affords neuroprotection and inhibits ?-synuclein aggregation in lipopolysaccharide-induced Parkinson's disease model, Inflammopharmacology, vol.26, pp.349-360, 2017.

N. Ahsan, S. Mishra, M. K. Jain, A. Surolia, and S. Gupta, Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant ?-Synuclein, Sci. Rep, vol.5, 2015.

A. Marchiani, S. Mammi, G. Siligardi, R. Hussain, I. Tessari et al., Small molecules interacting with ?-synuclein: Antiaggregating and cytoprotective properties, Amino Acids, vol.45, pp.327-338, 2013.

B. S. Gadad, P. K. Subramanya, S. Pullabhatla, I. S. Shantharam, and K. S. Rao, Curcumin-glucoside, a novel synthetic derivative of curcumin, inhibits alpha-synuclein oligomer formation: Relevance to Parkinson's disease, Curr. Pharm Des, vol.18, pp.76-84, 2012.

N. Taebnia, D. Morshedi, S. Yaghmaei, F. Aliakbari, F. Rahimi et al., Curcumin-Loaded Amine-Functionalized Mesoporous Silica Nanoparticles Inhibit ?-Synuclein Fibrillation and Reduce Its Cytotoxicity-Associated Effects, Langmuir, vol.32, pp.13394-13402, 2016.

P. Kundu, M. Das, K. Tripathy, and S. K. Sahoo, Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood-Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease, ACS Chem. Neurosci, vol.7, pp.1658-1670, 2016.

V. S. Bollimpelli, P. Kumar, S. Kumari, and A. K. Kondapi, Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity, Neurochem. Int, vol.95, pp.37-45, 2016.

S. Gautam, S. Karmakar, A. Bose, and P. K. Chowdhury, beta-cyclodextrin and curcumin, a potent cocktail for disaggregating and/or inhibiting amyloids: A case study with alpha-synuclein, Biochemistry, vol.53, pp.4081-4083, 2014.

N. Zhang, F. Yan, X. Liang, M. Wu, Y. Shen et al., Localized delivery of curcumin into brain with polysorbate 80-modified cerasomes by ultrasound-targeted microbubble destruction for improved Parkinson's disease therapy, Theranostics, vol.8, pp.2264-2277, 2018.

R. Y. Kosuru, A. Roy, S. K. Das, and S. Bera, Gallic Acid and Gallates in Human Health and Disease: Do Mitochondria Hold the Key to Success?, Mol. Nutr. Food Res, vol.62, p.1700699, 2018.

M. T. Ardah, K. E. Paleologou, G. Lv, S. B. Khair, A. S. Kazim et al., Structure activity relationship of phenolic acid inhibitors of ?-synuclein fibril formation and toxicity. Front, Aging Neurosci, vol.6, 2014.

Y. Liu, J. A. Carver, A. N. Calabrese, and T. L. Pukala, Gallic acid interacts with ?-synuclein to prevent the structural collapse necessary for its aggregation, Biochim. Biophys. Acta (BBA) Proteins Proteom, vol.1844, pp.1481-1485, 2014.

J. C. Garcia-moreno, M. Porta-de-la-riva, E. Martínez-lara, E. Siles, and A. Cañuelo, Tyrosol, a simple phenol from EVOO, targets multiple pathogenic mechanisms of neurodegeneration in a C. elegans model of Parkinson's disease, Neurobiol. Aging, vol.82, pp.60-68, 2019.

K. Gasiorowski, E. Lamer-zarawska, J. Leszek, K. Parvathaneni, B. B. Yendluri et al., Flavones from root of Scutellaria baicalensis Georgi: Drugs of the future in neurodegeneration?, CNS Neurol. Disord. Drug Targets, vol.10, pp.184-191, 2011.

X. Meng, L. A. Munishkina, A. L. Fink, and V. N. Uversky, Molecular mechanisms underlying the flavonoidinduced inhibition of alpha-synuclein fibrillation, Biochemistry, vol.48, pp.8206-8224, 2009.

M. Caruana, T. Högen, J. Levin, A. Hillmer, A. Giese et al., Inhibition and disaggregation of ?synuclein oligomers by natural polyphenolic compounds, FEBS Lett, vol.585, pp.1113-1120, 2011.

M. Caruana, J. Neuner, T. Högen, F. Schmidt, F. Kamp et al., Polyphenolic compounds are novel protective agents against lipid membrane damage by ?-synuclein aggregates in vitro, Biochim. Biophys. Acta (BBA) Biomembr, vol.1818, pp.2502-2510, 2012.

Q. Zhu, X. Zhuang, and J. Lu, Neuroprotective effects of baicalein in animal models of Parkinson's disease: A systematic review of experimental studies, Phytomedicine, vol.55, pp.302-309, 2019.

J. H. Lu, M. T. Ardah, S. S. Durairajan, L. F. Liu, L. X. Xie et al., Baicalein inhibits formation of alpha-synuclein oligomers within living cells and prevents Abeta peptide fibrillation and oligomerisation, Chembiochem, vol.12, pp.615-624, 2011.

D. P. Hong, A. L. Fink, and V. N. Uversky, Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein, J. Mol. Biol, vol.383, pp.214-223, 2008.

X. Li, G. Zhang, Q. Nie, T. Wu, L. Jiao et al., Baicalein blocks alpha-synuclein secretion from SN4741 cells and facilitates alpha-synuclein polymerization to big complex, Neurosci. Lett, vol.655, pp.109-114, 2017.

M. Kostka, T. Högen, K. M. Danzer, J. Levin, M. Habeck et al., Single Particle Characterization of Iron-induced Pore-forming ?-Synuclein Oligomers, J. Biol. Chem, vol.283, pp.10992-11003, 2008.

Q. Hu, V. N. Uversky, M. Huang, H. Kang, F. Xu et al., Baicalein inhibits alpha-synuclein oligomer formation and prevents progression of alpha-synuclein accumulation in a rotenone mouse model of Parkinson's disease, Biochim. Biophys. Acta, vol.1862, pp.1883-1890, 2016.

K. C. Hung, H. J. Huang, Y. T. Wang, and A. M. Lin, Baicalein attenuates alpha-synuclein aggregation, inflammasome activation and autophagy in the MPP(+)-treated nigrostriatal dopaminergic system in vivo, J. Ethnopharmacol, vol.194, pp.522-529, 2016.

D. Morshedi, F. Aliakbari, A. Tayaranian-marvian, A. Fassihi, F. Pan-montojo et al., Cuminaldehyde as the Major Component of Cuminum cyminum, a Natural Aldehyde with Inhibitory Effect on Alpha-Synuclein Fibrillation and Cytotoxicity, J. Food Sci, vol.80, pp.2336-2345, 2015.

D. Morshedi and M. Nasouti, Essential Oils May Lead alpha-Synuclein towards Toxic Fibrils Formation, Parkinsons Dis, p.6219249, 2016.

T. Sneideris, L. Baranauskiene, J. G. Cannon, R. Rutkiene, R. Meskys et al., Looking for a generic inhibitor of amyloid-like fibril formation among flavone derivatives, PeerJ, vol.3, p.1271, 2015.

L. Pogacnik, K. Pirc, I. Palmela, M. Skrt, K. S. Kim et al., Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro, Brain Res, pp.17-26, 1651.

Y. Xu, Y. Zhang, Z. Quan, W. Wong, J. Guo et al., Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease, Neurochem. Res, vol.41, pp.2788-2796, 2016.

D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino et al., EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct Mol. Biol, vol.15, pp.558-566, 2008.

J. Bieschke, J. Russ, R. P. Friedrich, D. E. Ehrnhoefer, H. Wobst et al., EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci, vol.107, pp.7710-7715, 2010.

H. T. Trinh, E. H. Joh, H. Y. Kwak, N. I. Baek, and D. H. Kim, Anti-pruritic effect of baicalin and its metabolites, baicalein and oroxylin A, in mice, Acta Pharm. Sin, vol.31, pp.718-724, 2010.

X. Liu, S. Zhou, D. Shi, Q. Bai, H. Liu et al., Influence of EGCG on alpha-synuclein (alphaS) aggregation and identification of their possible binding mode: A computational study using molecular dynamics simulation, Chem. Biol. Drug Des, vol.91, pp.162-171, 2018.

N. Lorenzen, S. B. Nielsen, Y. Yoshimura, B. S. Vad, C. B. Andersen et al., How epigallocatechin gallate can inhibit alpha-synuclein oligomer toxicity in vitro, J. Biol. Chem, vol.289, pp.21299-21310, 2014.

J. E. Yang, K. Y. Rhoo, S. Lee, J. T. Lee, J. H. Park et al., EGCG-mediated Protection of the Membrane Disruption and Cytotoxicity Caused by the 'Active Oligomer' of alpha-Synuclein, Sci. Rep, vol.7, p.17945, 2017.

O. Weinreb, S. Mandel, M. B. Youdim, and T. Amit, Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic, Biol. Med, vol.62, pp.52-64, 2013.

F. L. Palhano, J. Lee, N. P. Grimster, and J. W. Kelly, Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils, J. Am. Chem. Soc, vol.135, pp.7503-7510, 2013.

Y. Li, Z. Chen, Z. Lu, Q. Yang, L. Liu et al., Cell-addictive" dualtarget traceable nanodrug for Parkinson's disease treatment via flotillins pathway, Theranostics, vol.8, pp.5469-5481, 2018.

G. Grelle, A. Otto, M. Lorenz, R. F. Frank, E. E. Wanker et al., Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils, Biochemistry, vol.50, pp.10624-10636, 2011.

H. Noack, U. Kube, and W. Augustin, Relations between tocopherol depletion and coenzyme Q during lipid peroxidation in rat liver mitochondria, Free Radic. Res, vol.20, pp.375-386, 1994.

P. Forsmark-andree, C. P. Lee, G. Dallner, and L. Ernster, Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic, Biol. Med, vol.22, pp.391-400, 1997.

J. B. Schulz, D. R. Henshaw, R. T. Matthews, and M. F. Beal, Coenzyme Q10 and nicotinamide and a free radical spin trap protect against MPTP neurotoxicity, Exp. Neurol, vol.132, issue.95, pp.90033-90033, 1995.

C. Cleren, L. Yang, B. Lorenzo, N. Y. Calingasan, A. Schomer et al., Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism, J. Neurochem, vol.104, pp.1613-1621, 2008.

L. Yang, N. Y. Calingasan, E. J. Wille, K. Cormier, K. Smith et al., Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases, J. Neurochem, vol.109, pp.1427-1439, 2009.

C. W. Shults, D. Oakes, K. Kieburtz, M. F. Beal, R. Haas et al., Effects of coenzyme Q10 in early Parkinson disease: Evidence of slowing of the functional decline, Arch. Neurol, vol.59, pp.1541-1550, 2002.

A. R. Esteves, D. M. Arduino, R. H. Swerdlow, C. R. Oliveira, and S. M. Cardoso, Oxidative stress involvement in alpha-synuclein oligomerization in Parkinson's disease cybrids, Antioxid. Redox. Signal, vol.11, pp.439-448, 2009.

P. Mohanan, S. Subramaniyam, R. Mathiyalagan, and D. C. Yang, Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions, J. Ginseng. Res, vol.42, pp.123-132, 2018.

M. T. Ardah, K. E. Paleologou, G. Lv, S. A. Menon, S. B. Khair et al., Ginsenoside Rb1 inhibits fibrillation and toxicity of alpha-synuclein and disaggregates preformed fibrils, Neurobiol. Dis, vol.74, pp.89-101, 2015.

Y. Heng, Q. S. Zhang, Z. Mu, J. F. Hu, Y. H. Yuan et al., Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting alpha-synuclein abnormalities in the substantia nigra, Toxicol. Lett, vol.243, pp.7-21, 2016.

J. M. Van-kampen, D. B. Baranowski, C. A. Shaw, and D. G. Kay, Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease, Exp. Gerontol, vol.50, pp.95-105, 2014.

K. Tatemoto, M. Hosoya, Y. Habata, R. Fujii, T. Kakegawa et al., Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor, Biochem. Biophys. Res. Commun, vol.251, pp.471-476, 1998.

J. Zhu, S. Dou, Y. Jiang, B. Bai, J. Chen et al., Apelin-36 exerts the cytoprotective effect against MPP+-induced cytotoxicity in SH-SY5Y cells through PI3K/Akt/mTOR autophagy pathway, Life Sci, vol.224, pp.95-108, 2019.

J. Zhu, W. Gao, X. Shan, C. Wang, H. Wang et al., Apelin-36 mediates neuroprotective effects by regulating oxidative stress, autophagy and apoptosis in MPTPinduced Parkinson's disease model mice, Brain Res, p.146493, 1726.

T. Satoh, S. R. Mckercher, and S. A. Lipton, Reprint of: Nrf2/ARE-mediated antioxidant actions of proelectrophilic drugs. Free Radic, Biol. Med, vol.66, pp.45-57, 2014.

G. Skibinski, V. Hwang, D. M. Ando, A. Daub, A. K. Lee et al., Nrf2 mitigates LRRK2-and ?-synuclein-induced neurodegeneration by modulating proteostasis, Proc. Natl. Acad. Sci, vol.114, pp.1165-1170, 2017.

R. Mogana, K. Teng-jin, and C. Wiart, Anti-Inflammatory, Anticholinesterase, and Antioxidant Potential of Scopoletin Isolated from Canarium patentinervium Miq, Burseraceae Kunth). Evid. Based. Complement. Altern. Med, vol.734824, 2013.

K. K. Narasimhan, D. Jayakumar, P. Velusamy, A. Srinivasan, T. Mohan et al., Morinda citrifolia and Its Active Principle Scopoletin Mitigate Protein Aggregation and Neuronal Apoptosis through Augmenting the DJ

/. /nrf2 and . Pathway, Oxidative Med. Cell. Longev, pp.1-13, 2019.

J. A. Lee, H. J. Son, J. W. Choi, J. Kim, S. H. Han et al., Activation of the Nrf2 signaling pathway and neuroprotection of nigral dopaminergic neurons by a novel synthetic compound KMS99220, Neurochem. Int, vol.112, pp.96-107, 2018.

R. Lowe, D. L. Pountney, P. H. Jensen, W. P. Gai, and N. H. Voelcker, Calcium(II) selectively induces alphasynuclein annular oligomers via interaction with the C-terminal domain, Protein Sci, vol.13, pp.3245-3252, 2004.

R. M. Rasia, C. W. Bertoncini, D. Marsh, W. Hoyer, D. Cherny et al., Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease, Proc. Natl. Acad. Sci, vol.102, pp.4294-4299, 2005.

A. Binolfi, R. M. Rasia, C. W. Bertoncini, M. Ceolin, M. Zweckstetter et al., Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement, J. Am. Chem. Soc, vol.128, pp.9893-9901, 2006.

F. Jia, N. Song, W. Wang, X. Du, Y. Chi et al., High Dietary Iron Supplement Induces the Nigrostriatal Dopaminergic Neurons Lesion in Transgenic Mice Expressing Mutant A53T Human Alpha-Synuclein. Front, Aging Neurosci, vol.10, p.97, 2018.

H. Jiang, N. Song, Q. Jiao, L. Shi, and X. Du, Iron Pathophysiology in Parkinson Diseases, Adv. Exp. Med. Biol, vol.1173, pp.45-66, 2019.

R. Wang, Y. Wang, L. Qu, B. Chen, H. Jiang et al., Iron-induced oxidative stress contributes to alpha-synuclein phosphorylation and up-regulation via polo-like kinase 2 and casein kinase 2, Neurochem. Int, vol.125, pp.127-135, 2019.

D. Devos, C. Moreau, J. C. Devedjian, J. Kluza, M. Petrault et al., Targeting chelatable iron as a therapeutic modality in Parkinson's disease, Antioxid. Redox. Signal, vol.21, pp.195-210, 2014.

E. Carboni, L. Tatenhorst, L. Tonges, E. Barski, V. Dambeck et al., Deferiprone Rescues Behavioral Deficits Induced by Mild Iron Exposure in a Mouse Model of Alpha-Synuclein Aggregation, Neuromol. Med, vol.19, pp.309-321, 2017.

A. Martin-bastida, R. J. Ward, R. Newbould, P. Piccini, D. Sharp et al., Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson's disease, Sci. Rep, vol.7, p.1398, 2017.

F. Febbraro, K. J. Andersen, V. Sanchez-guajardo, N. Tentillier, and M. Romero-ramos, Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkinson's model, Exp. Neurol, vol.247, pp.45-58, 2013.

D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo et al., Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease, Neuron, vol.37, pp.899-909, 2003.

D. I. Finkelstein, D. J. Hare, J. L. Billings, A. Sedjahtera, M. Nurjono et al., Clioquinol Improves Cognitive, Motor Function, and Microanatomy of the Alpha-Synuclein hA53T Transgenic Mice, ACS Chem. Neurosci, vol.7, pp.119-129, 2016.

J. L. Billings, S. L. Gordon, T. Rawling, P. A. Doble, A. I. Bush et al., l-3,4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson's disease, J. Neurochem, vol.150, pp.88-106, 2019.

N. P. Mena, O. Garcia-beltran, F. Lourido, P. J. Urrutia, R. Mena et al., The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death, Biochem. Biophys. Res. Commun, vol.463, pp.787-792, 2015.

D. B. Shachar, N. Kahana, V. Kampel, A. Warshawsky, and M. B. Youdim, Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats, Neuropharmacology, vol.46, pp.254-263, 2004.

H. Zheng, L. M. Weiner, O. Bar-am, S. Epsztejn, Z. I. Cabantchik et al., Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer's, Parkinson's, and other neurodegenerative diseases, Bioorg. Med. Chem, vol.13, pp.773-783, 2005.

B. Das, A. Kandegedara, L. Xu, T. Antonio, T. Stemmler et al., A Novel Iron(II) Preferring Dopamine Agonist Chelator as Potential Symptomatic and Neuroprotective Therapeutic Agent for Parkinson's Disease, ACS Chem. Neurosci, vol.8, pp.723-730, 2017.

B. Das, S. Rajagopalan, G. S. Joshi, L. Xu, D. Luo et al., A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses alpha-syn-and MPTP-induced toxicities in vivo, Neuropharmacology, vol.123, pp.88-99, 2017.

D. I. Finkelstein, J. L. Billings, P. A. Adlard, S. Ayton, A. Sedjahtera et al., The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson's disease, Acta Neuropathol. Commun, vol.5, p.53, 2017.

T. Du, L. Li, N. Song, J. Xie, and H. Jiang, Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells, Int. J. Toxicol, vol.29, pp.625-633, 2010.

L. Qu, H. Xu, W. Jia, H. Jiang, and J. Xie, Rosmarinic acid protects against MPTP-induced toxicity and inhibits iron-induced alpha-synuclein aggregation, Neuropharmacology, vol.144, pp.291-300, 2019.

P. Zhang, H. J. Park, J. Zhang, E. Junn, R. J. Andrews et al., Translation of the intrinsically disordered protein alpha-synuclein is inhibited by a small molecule targeting its structured mRNA, Proc. Natl. Acad. Sci, vol.2020

A. Villar-pique, G. Rossetti, S. Ventura, P. Carloni, C. O. Fernandez et al., Copper(II) and the pathological H50Q alpha-synuclein mutant: Environment meets genetics, Commun. Integr. Biol, vol.10, p.1270484, 2017.

J. A. Castillo-gonzalez, M. J. Loera-arias, O. Saucedo-cardenas, R. Montes-de-oca-luna, A. Garcia-garcia et al., Phosphorylated alpha-Synuclein-Copper Complex Formation in the Pathogenesis of Parkinson's Disease, p.9164754, 2017.

T. Tsunemi, K. Hamada, and D. Krainc, ATP13A2/PARK9 regulates secretion of exosomes and alphasynuclein, J. Neurosci, vol.34, pp.15281-15287, 2014.

T. Tsunemi, D. Krainc, and . Zn, +) dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation, Hum. Mol. Genet, vol.23, issue.2, pp.2791-2801, 2014.

V. Kumar, D. Singh, B. K. Singh, S. Singh, N. Mittra et al., Alpha-synuclein aggregation, Ubiquitin proteasome system impairment, and L-Dopa response in zinc-induced Parkinsonism: Resemblance to sporadic Parkinson's disease, Mol. Cell Biochem, vol.444, pp.149-160, 2018.

J. Zhao, Q. Liang, Q. Sun, C. Chen, L. Xu et al., ?)-Epigallocatechin-3-gallate (EGCG) inhibits fibrillation, disaggregates amyloid fibrils of ?-synuclein, and protects PC12 cells against ?synuclein-induced toxicity, vol.7, pp.32508-32517, 2017.

Y. Teng, J. Zhao, L. Ding, Y. Ding, and P. Zhou, Complex of EGCG with Cu(II) Suppresses Amyloid Aggregation and Cu(II)-Induced Cytotoxicity of alpha-Synuclein, Molecules, vol.24, p.2040, 2019.

J. Zhao, L. Xu, Q. Liang, Q. Sun, C. Chen et al., Metal chelator EGCG attenuates Fe(III)-induced conformational transition of alpha-synuclein and protects AS-PC12 cells against Fe(III)-induced death, J. Neurochem, vol.143, pp.136-146, 2017.

I. Kurkowska-jastrzebska, T. Litwin, I. Joniec, A. Ciesielska, A. Przybylkowski et al., Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkinson's disease, Int. Immunopharmacol, vol.4, pp.1307-1318, 2004.

F. A. Mcleary, A. N. Rcom-h'cheo-gauthier, J. Kinder, M. Goulding, T. K. Khoo et al., Dexamethasone Inhibits Copper-Induced Alpha-Synuclein Aggregation by a Metallothionein-Dependent Mechanism, Neurotox Res, vol.33, pp.229-238, 2018.

E. Bezard, Neuroprotection for Parkinson's disease: A call for clinically driven experimental design, Lancet. Neurol, vol.2, p.393, 2003.

E. Bezard, S. Dovero, C. Prunier, P. Ravenscroft, S. Chalon et al., Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease, J. Neurosci, vol.21, pp.6853-6861, 2001.

J. H. Kordower, C. W. Olanow, H. B. Dodiya, Y. Chu, T. G. Beach et al., Disease duration and the integrity of the nigrostriatal system in Parkinson's disease, Brain, vol.136, pp.2419-2431, 2013.

A. A. Davis, C. E. Inman, Z. M. Wargel, U. Dube, B. M. Freeberg et al., APOE genotype regulates pathology and disease progression in synucleinopathy, Sci. Transl. Med, vol.12, 2020.

N. Zhao, O. N. Attrebi, Y. Ren, W. Qiao, B. Sonustun et al., APOE4 exacerbates alpha-synuclein pathology and related toxicity independent of amyloid, Sci. Transl. Med, vol.12, 2020.