A. Ladram and P. Nicolas, Antimicrobial peptides from frog skin: biodiversity and therapeutic promises, Front. Biosci. Landmark, vol.21, pp.1341-1371, 2016.

R. E. Hancock, E. F. Haney, and E. E. Gill, The immunology of host defence peptides: Beyond antimicrobial activity, Nat. Rev. Immunol, vol.16, pp.321-334, 2016.

E. F. Haney, S. K. Straus, and R. E. Hancock, Reassessing the Host Defense Peptide Landscape, Front. Chem, vol.7, p.43, 2019.

J. M. Pantic, The potential of frog skin-derived peptides for development into therapeutically-valuable immunomodulatory agents, Molecules, vol.22, p.2071, 2017.

J. M. Conlon, M. Mechkarska, M. L. Lukic, and P. R. Flatt, Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents, Peptides, vol.57, pp.67-77, 2014.

M. D. Seo, H. S. Won, J. H. Kim, T. Mishig-ochir, and B. J. Lee, Antimicrobial peptides for therapeutic applications: A review, Molecules, vol.17, pp.12276-12286, 2012.

M. L. Mangoni and Y. Shai, Short native antimicrobial peptides and engineered ultrashort lipopeptides: Similarities and differences in cell specificities and modes of action, Cell. Mol. Life Sci, vol.68, pp.2267-2280, 2011.

M. L. Mangoni, A. Di-grazia, F. Cappiello, B. Casciaro, and V. Luca, Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More, Curr. Top. Med. Chem, vol.16, pp.54-64, 2016.

F. Abbassi, Temporin-SHf, a new type of Phe-rich and hydrophobic ultrashort antimicrobial peptide, J. Biol. Chem, vol.285, pp.16880-16892, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00578813

F. Abbassi, Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide, Biochimie, vol.95, pp.388-399, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537172

A. C. Rinaldi, J. M. Conlon, and . Temporins, Handbook of Biologically Active Peptides, 2013.

G. Wang, X. Li, and Z. Wang, APD3: The antimicrobial peptide database as a tool for research and education, Nucleic Acids Res, vol.44, pp.1087-1093, 2016.

D. Wade, Antibacterial activities of temporin A analogs, FEBS Lett, vol.479, pp.6-9, 2000.

M. L. Mangoni, Structure-activity relationship, conformational and biological studies of temporin L analogues, J. Med. Chem, vol.54, pp.1298-1307, 2011.

E. Urbán, E. Nagy, T. Pál, Á. Sonnevend, and J. M. Conlon, Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria, Int. J. Antimicrob. Agents, vol.29, pp.317-321, 2007.

F. Abbassi, Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica, Peptides, vol.29, pp.1526-1533, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00649680

Z. Raja, Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent, PLoS One, vol.12, p.174024, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517346

P. Grieco, The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide, Biochim. Biophys. Acta -Biomembr, vol.1828, pp.652-660, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00968523

J. M. Conlon, Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa, Peptides, vol.28, pp.2075-2080, 2007.

S. André, Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity, ACS Chem. Biol, vol.10, pp.2257-2266, 2015.

M. L. Mangoni, Temporins, small antimicrobial peptides with leishmanicidal activity, J. Biol. Chem, vol.280, pp.984-990, 2005.

G. A. Eggimann, The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of antimicrobial peptides, Molecules, vol.20, pp.2775-2785, 2015.

M. E. Marcocci, The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection, Antimicrob. Agents Chemother, vol.62, pp.2367-2384, 2018.

M. Roy, Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K 3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1, Viruses, vol.11, p.77, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02066789

J. Alvar, Leishmaniasis worldwide and global estimates of its incidence, Plos One, vol.7, p.35671, 2012.

V. G. Chinchar, Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides, Virology, vol.323, pp.268-275, 2004.

A. D. Grazia, V. Luca, L. T. Segev-zarko, Y. Shai, and L. Mangoni, Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus, Antimicrob. Agents Chemother, vol.58, pp.2520-2527, 2014.

H. J. Newton, D. K. Ang, I. R. Van-driel, and E. L. Hartland, Molecular pathogenesis of infections caused by Legionella pneumophila, Clin. Microbiol. Rev, vol.23, pp.274-298, 2010.

A. Khweek, A. Amer, and A. O. , Factors mediating environmental biofilm formation by Legionella pneumophila, Front. Cell. Infect. Microbiol, vol.8, p.38, 2018.

G. Oliva, T. Sahr, and C. Buchrieser, The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism, Front. Cell. Infect. Microbiol, vol.8, p.3, 2018.

J. M. Berjeaud, Legionella pneumophila: The paradox of a highly sensitive opportunistic waterborne pathogen able to persist in the environment, Front. Microbiol, vol.7, p.486, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02176321

A. S. Birteksoz-tan, Z. Zeybek, M. Hacioglu, P. B. Savage, and C. Bozkurt-guzel, In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila, J. Antibiot. (Tokyo), vol.72, pp.291-297, 2019.

Q. Chen, Temporin A and Related Frog Antimicrobial Peptides Use Formyl Peptide Receptor-Like 1 as a Receptor to Chemoattract Phagocytes, J. Immunol, vol.173, pp.2652-2659, 2004.

M. L. Mangoni, Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization, J. Biol. Chem, vol.283, pp.22907-22917, 2008.

S. Srivastava, A. Kumar, A. K. Tripathi, A. Tandon, and J. K. Ghosh, Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence, Biochem. J, vol.473, pp.4045-4062, 2016.

P. C. Oger, C. Piesse, A. Ladram, and V. Humblot, Engineering of antimicrobial surfaces by using temporin analogs to tune the biocidal/antiadhesive effect, Molecules, vol.24, p.814, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02052750

A. Lombana, Temporin-SHa peptides grafted on gold surfaces display antibacterial activity, J. Pept. Sci, vol.20, pp.563-569, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01044512

L. Grassi, G. Maisetta, G. Maccari, S. Esin, and G. Batoni, Analogs of the frog-skin antimicrobial peptide temporin 1Tb exhibit a wider spectrum of activity and a stronger antibiofilm potential as compared to the parental peptide, Front. Chem, vol.5, p.24, 2017.

G. Maisetta, Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters, Biofouling, vol.32, pp.787-800, 2016.

M. S. Mulani, E. E. Kamble, S. N. Kumkar, M. S. Tawre, and K. R. Pardesi, Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review, Front. Microbiol, vol.10, p.539, 2019.

A. Chahin and S. M. Opal, Severe Pneumonia Caused by Legionella pneumophila: Differential Diagnosis and Therapeutic Considerations, Infect. Dis. Clin. North Am, vol.31, pp.111-121, 2017.

Q. R. Ducarmon, Gut Microbiota and Colonization Resistance against, Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev, vol.83, pp.7-19, 2019.

D. K. Boamah, G. Zhou, A. W. Ensminger, and T. J. O'connor, From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella, Front. Cell. Infect. Microbiol, vol.7, p.477, 2017.

R. A. Garduño, E. Garduño, M. Hiltz, and P. S. Hoffman, Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms, Infect. Immun, vol.70, pp.6273-6283, 2002.

P. Robertson, H. Abdelhady, and R. A. Garduño, The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila, Front. Microbiol, vol.5, p.670, 2014.

E. D. Hughes, B. G. Byrne, and M. S. Swanson, A Two-Component System that Modulates Cyclic-di-GMP Metabolism Promotes Legionella pneumophila Differentiation and Viability in Low-Nutrient Conditions, J. Bacteriol, 2019.

L. Gomez-valero and C. Buchrieser, Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella, Genes Immun, vol.20, pp.394-402, 2019.

C. Wang, X. Chuai, and M. Liang, Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response, Med. Microbiol. Immunol, vol.208, pp.25-32, 2019.

H. L. Isenman, Legionnaires' disease caused by Legionella longbeachae: Clinical features and outcomes of 107 cases from an endemic area, Respirology, vol.21, pp.1292-1299, 2016.

J. Verdon, J. Berjeaud, C. Lacombe, and Y. Héchard, Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri, Peptides, vol.29, pp.978-984, 2008.

A. Marchand, Anti-Legionella activity of staphylococcal hemolytic peptides, Peptides, vol.32, pp.845-851, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00715789

A. Müller, J. Hacker, and B. C. Brand, Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection, Infect. Immun, vol.64, pp.4900-4906, 1996.

S. Hägele, J. Hacker, and B. C. Brand, Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death, FEMS Microbiol. Lett, vol.169, pp.51-58, 1998.

R. M. Martin, Principles of protein targeting to the nucleolus, Nucleus, vol.6, pp.314-325, 2015.

Y. R. Musinova, E. Y. Kananykhina, D. M. Potashnikova, O. M. Lisitsyna, and E. V. Sheval, A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli, Biochim. Biophys. Acta -Mol. Cell Res, vol.1853, pp.101-110, 2015.

M. Carmo-fonseca, L. Mendes-soares, and I. Campos, To be or not to be in the nucleolus, Nat. Cell Biol, vol.2, pp.107-112, 2000.

Z. Raja, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii, Plos One, vol.8, p.70782, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537173

J. Verdon, Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity, Front. Microbiol, vol.7, p.1484, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01427916

M. Pohin, Development of a new model of reconstituted mouse epidermis and characterization of its response to proinflammatory cytokines, J. Tissue Eng. Regen. Med, vol.12, pp.1098-1107, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01699562