T. G. Monk, Predictors of cognitive dysfunction after major noncardiac surgery, Anesthesiology, vol.108, pp.18-30, 2008.

L. Krenk, L. S. Rasmussen, and H. Kehlet, New insights into the pathophysiology of postoperative cognitive dysfunction, Acta Anaesthesiol. Scand, vol.54, pp.951-957, 2010.

K. Czy?-szypenbejl, W. M?drzycka-d?browska, K. Kwiecie?-jagu?, and K. Lewandowska, The Occurrence of Postoperative Cognitive Dysfunction (POCD) -Systematic Review, Psychiatr. Pol, vol.53, pp.145-160, 2019.

L. A. Evered and B. S. Silbert, Postoperative Cognitive Dysfunction and Noncardiac Surgery, Anesth. Analg, vol.127, pp.496-505, 2018.

I. Rundshagen, Postoperative cognitive dysfunction, Dtsch. Arztebl. Int, vol.111, pp.119-144, 2014.

G. L. Bryson and A. Wyand, Evidence-based clinical update: General anesthesia and the risk of delirium and postoperative cognitive dysfunction. Can, J. Anesth, vol.53, pp.669-677, 2006.

J. B. Dijkstra, P. J. Houx, and J. Jolles, Cognition after major surgery in the elderly: test performance and complaints, Br. J. Anaesth, vol.82, pp.867-74, 1999.

J. Steinmetz, K. B. Christensen, T. Lund, N. Lohse, and L. S. Rasmussen, Long-term consequences of postoperative cognitive dysfunction, Anesthesiology, vol.110, pp.548-555, 2009.

P. D. Bedford, Adverse cerebral effects of anaesthesia on old people, Lancet, vol.269, pp.259-63, 1955.

L. Evered, D. A. Scott, B. Silbert, and P. Maruff, Postoperative cognitive dysfunction is independent of type of surgery and anesthetic, Anesth. Analg, vol.112, pp.1179-1185, 2011.

J. Canet, Cognitive dysfunction after minor surgery in the elderly, Acta Anaesthesiol. Scand, vol.47, pp.1204-1214, 2003.

N. Terrando, Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, vol.107, pp.20518-20540, 2010.

D. R. Skvarc, Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies, Neurosci. Biobehav. Rev, vol.84, pp.116-133, 2018.

, Scientific RepoRtS |, vol.10, p.2768, 2020.

H. K. Fong, L. P. Sands, and J. M. Leung, The role of postoperative analgesia in delirium and cognitive decline in elderly patients: a systematic review, Anesth. Analg, vol.102, pp.1255-66, 2006.

M. Zhang, Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels, Proc. Natl. Acad. Sci. USA, vol.113, pp.6686-6695, 2016.

Y. Liu and Y. Yin, Emerging Roles of Immune Cells in Postoperative Cognitive Dysfunction, Mediators of Inflammation, 2018.

W. Kim, Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: Role of microglia, J. Neurosci, vol.20, pp.6309-6316, 2000.

M. Tremblay, R. L. Lowery, and A. K. Majewska, Microglial interactions with synapses are modulated by visual experience, PLoS Biol, vol.8, p.1000527, 2010.

A. Niraula, J. F. Sheridan, and J. P. Godbout, Microglia Priming with Aging and Stress, Neuropsychopharmacology, vol.42, pp.318-333, 2017.

E. C. Koellhoffer, L. D. Mccullough, and R. M. Ritzel, Old Maids: Aging and Its Impact on Microglia Function, Int. J. Mol. Sci, vol.18, pp.1-25, 2017.

X. Feng, Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice, JCI insight, vol.2, p.91229, 2017.

N. Terrando, Tumor necrosis factor-a triggers a cytokine cascade yielding postoperative cognitive decline, Proc. Natl. Acad. Sci. USA, vol.107, pp.20518-20522, 2010.

Y. Zhao, Neuroinflammation Induced by Surgery Does Not Impair the Reference Memory of Young Adult Mice, Mediators Inflamm, p.2016, 2016.

Z. Xu, Age-dependent postoperative cognitive impairment and Alzheimer-related neuropathology in mice, Sci. Rep, vol.4, p.3766, 2014.

S. Yang, Anesthesia and Surgery Impair Blood-Brain Barrier and Cognitive Function in Mice, Front. Immunol, vol.8, p.902, 2017.

L. E. Harry, Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model, J. Orthop. Res, vol.26, pp.1238-1282, 2008.

G. Le, D. A. Lowe, and M. Kyba, Freeze injury of the tibialis anterior muscle, Methods Mol. Biol, vol.1460, pp.33-41, 2016.

D. Hardy, Comparative Study of Injury Models for Studying Muscle Regeneration in Mice, PLoS One, vol.11, p.147198, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01447903

R. Lalonde, The neurobiological basis of spontaneous alternation, Neuroscience and Biobehavioral Reviews, vol.26, pp.91-104, 2002.

M. Leger, Object recognition test in mice, Nat. Protoc, vol.8, pp.2531-2538, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02135259

R. N. Hughes, The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory, Neurosci. Biobehav. Rev, vol.28, pp.497-505, 2004.

F. Verdonk, Phenotypic clustering: a novel method for microglial morphology analysis, J. Neuroinflammation, vol.13, p.153, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01389354

S. Preibisch, S. Saalfeld, and P. Tomancak, Globally optimal stitching of tiled 3D microscopic image acquisitions, Bioinformatics, vol.25, pp.1463-1468, 2009.

J. Schindelin, Fiji -an Open Source platform for biological image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

M. W. Salter and B. Stevens, Microglia emerge as central players in brain disease, Nat. Med, vol.23, pp.1018-1027, 2017.

T. K. Lim, Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain, J. Neurosci, vol.35, pp.3346-59, 2015.

P. Simon, R. Dupuis, and J. Costentin, Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions, Behav. Brain Res, vol.61, pp.59-64, 1994.

A. C. Cuello, R. Pentz, and H. Hall, The brain NGF metabolic pathway in health and in Alzheimer's pathology, Frontiers in Neuroscience, vol.13, 2019.

O. V. Forlenza, Lower Cerebrospinal Fluid Concentration of Brain-Derived Neurotrophic Factor Predicts Progression from Mild Cognitive Impairment to Alzheimer's Disease. Neuro, Molecular Med, vol.17, pp.326-332, 2015.

M. Hutchison, P. Comper, L. Mainwaring, and D. Richards, The Influence of Musculoskeletal Injury on Cognition Implications for Concussion The Influence of Musculoskeletal Injury on Cognition: implications for concussion research, Am. J. Sports Med, vol.39, pp.2331-2337, 2011.

W. Li, High doses of minocycline may induce delayed activation of microglia in aged rats and thus cannot prevent postoperative cognitive dysfunction, J. Int. Med. Res, vol.46, pp.1404-1413, 2018.

W. Zhao, H. Lu, X. Wang, R. M. Ransohoff, and L. Zhou, CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions, FASEB J, vol.30, pp.380-393, 2016.

J. T. Rogers, CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, J. Neurosci, vol.31, pp.16241-50, 2011.

J. Wyrobek, Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults, Br. J. Anaesth, vol.119, pp.324-332, 2017.

X. Q. Cheng, A multicentre randomised controlled trial of the effect of intra-operative dexmedetomidine on cognitive decline after surgery, Anaesthesia, vol.74, pp.741-750, 2019.

A. Pillai, Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: Correlation with plasma BDNF and psychopathology, Int. J. Neuropsychopharmacol, vol.13, pp.535-539, 2010.

S. Dieni, BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons, J. Cell Biol, vol.196, pp.775-88, 2012.

C. N. Parkhurst, Microglia promote learning-dependent synapse formation through BDNF, Cell, vol.155, pp.1596-1609, 2014.

B. N. Setty and M. J. Stuart, 15-Hydroxy-5,8,11,13-eicosatetraenoic acid inhibits human vascular cyclooxygenase. Potential role in diabetic vascular disease, J. Clin. Invest, vol.77, pp.202-213, 1986.

C. Rizzi, NGF steers microglia toward a neuroprotective phenotype, Glia, vol.66, pp.1395-1416, 2018.

T. Tikka, B. L. Fiebich, G. Goldsteins, and R. Keina, Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia, J. Neurosci, vol.21, pp.2580-2588, 2001.

A. M. Taylor, S. Mehrabani, S. Liu, A. J. Taylor, and C. M. Cahill, Topography of microglial activation in sensory and affect related brain regions in chronic pain, J. Neurosci. Res, vol.95, pp.1330-1335, 2017.

P. A. Boakye, Receptor dependence of BDNF actions in superficial dorsal horn: relation to central sensitization and actions of macrophage colony stimulating factor 1, J. Neurophysiol, vol.121, pp.2308-2322, 2019.

J. L. Spencer-segal, Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage, J. Neurosci, vol.31, pp.6780-90, 2011.

P. S. Distefano, The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons, Neuron, vol.8, pp.983-993, 1992.

P. S. Distefano and R. Curtis, Receptor mediated retrograde axonal transport of neurotrophic factors is increased after peripheral nerve injury, Prog. Brain Res, vol.103, pp.35-42, 1994.

A. Kumar, Regulatory role of NGFs in neurocognitive functions, Rev. Neurosci, vol.28, pp.649-673, 2017.